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Kurzfassung

Heutzutage werden mehr und mehr Applikationen mit Webtechnologien wie HTML, CSS
und JavaScript implementiert, die anschließend in Browsern ausgeführt werden. Das
Web dient dabei als betriebssystemunabhängige Applikationsplattform. Dadurch ändert
sich auch das zugrundeliegende Autorisierungsmodell, das nun nicht mehr ausschließlich
von lokalen Betriebssystemkonten und Dateisystemberechtigungen abhängt. Stattdessen
werden diese Konten nun von den Applikationen selbst implementiert, inklusive aller
Absicherungsmaßnahmen und Sicherheitskontrollen, die dafür notwendig sind. Aufgrund
der darin liegenden Komplexität führt dies jedoch dazu, dass Fehler in der Autorisie-
rungslogik zu den häufigsten Sicherheitsschwachstellen bei Webapplikationen zählen.
Die meisten Applikationen bauen auf dem Konzept der Access Control List auf, einem
Sicherheitsmodell das bestimmt, wer auf welche Objekte zugreifen darf.

Diese Diplomarbeit präsentiert das alternative Autorisierungsmodell der Object Capabili-
ties im Kontext von Webapplikationen, und wie es genutzt werden kann, um gewissen
Schwachstellenkategorien vorzubeugen. Dafür wurde eine Fallstudie durchgeführt und
ein Prototyp einer Webapplikation entwickelt, die auf diesem Modell aufbaut. Der Pro-
totyp wurde daraufhin einer Sicherheitsüberprüfung unterzogen, wobei die Applikation
auf die zehn häufigsten Webschwachstellen untersucht wurde. Ebenso wurde eine Mo-
dellevaluierung durchgeführt, bei der die grundlegenden Konzeptunterschiede beider
Sicherheitsmodelle verglichen wurden. Dafür wurden Beispiele aus bestehenden Applika-
tionen genommen, die auf Access Control Lists basieren. Die Ergebnisse der Analysen
sind vielversprechend, zeigen jedoch auch auf, dass Erweiterungen in aktuellen Browsern
notwendig sind, um Object Capabilities im Web noch sicherer zu gestalten.
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Abstract

Nowadays, more and more applications are built with web technologies like HTML, CSS,
and JavaScript, which are then executed in browsers. The web is utilized as an operating
system independent application platform. As a consequence, the underlying authorization
model changes, which now no longer depends only on operating system accounts and
file system permissions. Instead, these accounts are now implemented in the applications
themselves, including all of the protective measures and security controls that are required
for this. Because of the inherent complexity, flaws in the authorization logic are among
the most common security vulnerabilities in web applications. Most applications are built
on the concept of the Access-Control List, a security model which decides, who can access
what object.

This diploma thesis presents the alternative authorization model of Object Capabilities in
the context of web applications and how it can be used to prevent certain vulnerability
classes. A case study was conducted for this and a prototype of a web application was
developed that is based on this model. A security analysis was then performed on the
prototype, where it was tested for the ten most common security vulnerabilities found in
web applications. Afterwards, the model was evaluated by comparing the fundamental
differences between these two concepts. Examples were taken from existing applications
that are built upon access-control lists. The results of these analyses are promising, but
they also show that extensions in current browsers are required to further improve the
security for object capabilities on the web.
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CHAPTER 1
Introduction

Exploiting security vulnerabilities for criminal activities has become a business which costs
companies worldwide multiple billion U.S. dollars a year [1]. By 2026, the cybersecurity
market size is forecast to grow to 345.4 billion U.S. dollars [2]. Issues in how the security
model of modern web applications are designed are part of this problem, which this work
tries to address.

The Open Web Application Security Project (OWASP) published their “Top Ten” doc-
ument the first time in 2003 and it was updated regularly since then. The goal of this
document is to raise awareness in the developer community about the most common
security vulnerabilities in web applications and how to fix them. The latest version, as of
September 10, 2021, is the OWASP Top Ten 20171 [3].

Injection Attacks are, according to the “Top Ten” document, the most common kind of
attacks on web applications. An injection attack can be performed by crafting special user
input, which the application does not recognize as data but as code which needs to be run.
This can be, for example, a SQL injection, where the user gets access to the database,
or an operating system command injection, where the user is able to perform system
commands on the remote server. The common way to prevent these kind of attacks is
to encode the user input data with respect to their current environment, such that the
system does not interpret this data as code.

Broken Authentication is the second most common kind of security vulnerability, according
to the OWASP. This refers to a broken authentication or session management system.
This includes brute force attacks on the login, or using unexpired session tokens, which are
still valid. Solving this problem includes many recommendations, such as implementing
multi-factor authentication, enabling strict rate limiting for request, requiring complex
passwords, and generating secure random session IDs are some of them.

1Since then the newer 2021 version was released.
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1. Introduction

Broken Access Control is the fifth most common security issue and describes that users
can perform actions they should not be able to because the system is not properly
enforcing all constraints. This allows an attacker to view sensible data or perform critical
operations. Implementing allow- and deny-lists, role-based checks, monitoring, and rate
limiting are common counter-measures.

The listed vulnerabilities and the underlying systems in the OWASP “Top Ten” document
have some properties in common:

• The application has ambient authority and power, given by the operating system.

• Authentication and performing a requested action are two distinct steps.

• The security concept is built around the model of the Access-Control List (ACL).

By building the web application around the concept of capabilities, the Principle of Least
Privilege (PoLP) [4] is built-in by design, reducing the risk of being vulnerable to the most
common web attacks. A capability is described as a token of authority. It is a reference
to an object, including a set of privileges or permissions. This token is transferable and
unforgeable [5]. Together with a group of simple techniques built around this concept,
complete authorization frameworks can be implemented this way.

1.1 Aim of the Work
Authorization in software systems in the last few decades have been built on the concept
of access-control lists. Many techniques and patterns were developed to mitigate risks
and security problems that are inherent to this kind of authorization scheme. This thesis
will present an alternative approach to authorization, based on Object Capabilities, that
is not susceptible to attacks that are common in ACL-based systems.

The following research questions will be answered in this thesis:

1. Can vulnerabilities in authorization systems be prevented by design?

2. Is a capability-based system at least as secure as an ACL one?

3. Can the web be used as a platform for exchanging secure tokens?

4. How compatible is it with the rest of the ACL-based ecosystem?

The overall aim of this thesis is to produce a collection of security patterns which prevent
certain classes of vulnerabilities by design, while focusing on maintaining the compatibility
to the currently existing ecosystem of software products. These patterns should provide
practical benefits and have to be usable in real-world applications.

2



1.2. Structure of the Work

1.2 Structure of the Work
The rest of the thesis is structured as follows:

• Chapter 2 describes the background behind the technologies and techniques that
are going to be presented in this thesis.

• Chapter 3 shows the implementation of a software prototype that is built on top of
the presented concepts.

• Chapter 4 presents the results of the security analysis that was conducted on the
prototype.

• Chapter 5 evaluates the security aspects of the presented model compared to real-life
software products.

• Chapter 6 gives an overview on related work and how the security of OCAP-based
applications can be further strengthened.

• Chapter 7 concludes the findings of this thesis.
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CHAPTER 2
Background

In this chapter we are going to explain concepts and terms that are used throughout this
thesis as well as state-of-the-art practices. This overview, in addition to some historical
background, serves the purpose to establish or refresh the necessary knowledge base to
understand the ideas and results in the following chapters. Further explanations are given
when needed.

2.1 Capability-based Security
What is a capability? A capability is a transferable and unforgeable token. It contains a
reference to an object or a resource and the set of allowed actions that can be performed
on it. When we talk about capability-based security in this work, we mean systems that
are built around this concept.

Capabilities are about access control. While the name implies that it is about what a
system is capable of and can do, it is actually about what a system is allowed to do.
Because the word “capability” is so overloaded with different meanings and because this
concept overlaps with a lot of object-oriented programming principles, nowadays the term
Object Capabilities (OCAP) is oftentimes preferred. Nonetheless, capabilities are not tied
to object-oriented programming and have been in use in various different contexts, first
being mentioned in 1966 while discussing concurrent programming [6] and being the basis
for sophisticated implementations of operating systems [7][8], hardware [5], kernels [9],
file systems [10], and more. They are also not always used for security but safety. In the
programming language Pony, which has a focus on safe, high-performance computations,
capabilities are used to tag data to allow problem-free concurrency without locks [11].

Because capabilities combine both designation and authority, meaning that they specify a
particular resource and what access is allowed, whoever possesses a capability can exercise
its authority. For a real-world metaphor, a car key resembles a capability. It designates a

5



2. Background

resource, a particular car, and access rights, opening it, driving it, etc. Holding access to
that key provides all the authority needed to use the car. This leads to one of the key
properties of capabilities: the ability to transfer them. They allow to delegate authority.
Giving that car key to someone else allows the other person to drive that particular car.
In the digital realm, we can further limit the authority of that key by making it revocable,
only valid between a certain time range, destroying it after the first use, or setting a hard
limit on how many kilometers the car will drive.

The physical key can be replicated or forged, which does not have to be true for the digital
one. Unforgeability is the second most important aspect of capabilities. It guarantees that
they can only be accessed via certain ways: creation, transfer, and endowment. When
someone creates a new object, they receive a capability for it with full access. Capabilities
can be transferred so to get access to a capability someone else has to pass this capability.
This also implies that, for example, when Alice wants to pass a capability for Carol to
Bob she needs to possess references to both of them, which means that an object with
no capabilities cannot leak data to somewhere else. Also, Carol and Bob cannot force
the capability transfer as Alice must participate and decide if she wants to do that [12].
Objects can be given capability at creation, so an endowment is a creation combined
with a transfer.

Capability-based systems follow the Principle of Least Authority1 (POLA), as it follows
from using object capabilities. If an object is only allowed to do few things it can also cause
less damage. This allows for collaboration between untrusted parties, as the potential
damage that can be caused by a malicious actor is reduced to a minimum.

2.1.1 Programming with Capabilities

A capability in the context of programming languages is still a reference to some piece
of data. In object oriented languages, this is usually a reference to an object but it is
not limited to that. A capability can also be a reference to a primitive type, a function,
a closure, or other data types and, therefore, be also used with other programming
paradigms like functional programming.

In order to guarantee unforgeability, the used programming language has to support
“safe” pointers. References are pointers to a specific address in memory, where data are
stored. The language must protect these, such that it is not possible to, for example, cast
an integer to a pointer as is the case for the C language. Only creation, transfer, and
endowment give access to object references.

Transferability is given by the fact that data, or references, can be passed as arguments
to functions. It turned out that OCAP security can be encoded as normal programming
techniques by omitting global scope, passing arguments, and lexical scope [13].

1We use authority and privilege interchangeably in this work, although subtle differences exist.
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2.1. Capability-based Security

Listing 2.1: “Counter” example in JavaScript showing OCAP programming

1 function mkCounter() {
2 let count = 0;
3
4 return Object.freeze({
5 increment: function () {
6 return count++;
7 },
8 decrement: function () {
9 return count--;

10 }
11 });
12 }
13
14 counter = mkCounter();
15 entryGuard.giveCounter(counter.increment);
16 exitGuard.giveCounter(counter.decrement);

Listing 2.1 demonstrates a “counter” example in JavaScript. The function mkCounter
contains a mutable variable called count and returns a JavaScript object that contains
two functions: one to increment the count, and one to decrement it. Object.freeze
creates an immutable version of the object. The count variable is only accessible within
this function, a closure, and the only way to manipulate it is by calling one of the two
provided functions, as they have access to the variable, being in the lexical scope. This is
equivalent to a class in object oriented languages where mkCounter is the constructor,
count a private instance variable, and increment and decrement the public API.
Line 14–16 then shows how to use this as a security mechanism. The object Alice has
access to two other objects called “entryGuard” and “exitGuard”. The entry guard should
only have the power to count up, while the exit guard should only count down. Alice
creates a new counter object and passes only the increment function to the entry guard
and only the decrement function to the exit guard. This is also a demonstration of
POLA, as both guard objects are only being given the authority they need to do their job.
It is also an example for good software engineering in general. Protecting the internal
state of the counter object is data encapsulation or data hiding. Passing the function as
an argument is equivalent to Dependency Injection and fulfills two of the five principles of
SOLID, an acronym coined by Robert C. Martin [14]; the Interface Segregation Principle
and the Dependency Inversion Principle.

Similar to design patterns in object oriented design, several patterns emerged for pro-
gramming with object capabilities. We will now present four of these patterns.

Revoker Listing 2.2 shows an example for the Revoker pattern. When Alice passes an
object reference to Bob, she can never forcefully get that reference back. Early research
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2. Background

work assumed that this limitation is a downside of object capabilities [15]. The Revoker
pattern demonstrates how revocability can still be provided in an OCAP system.

Listing 2.2: Revocation example in JavaScript

1 function mkRevocable(fn) {
2 return Object.freeze({
3 wrapper: function (...args) {
4 return fn(...args);
5 },
6 revoke: function () { cap = null; }
7 });
8 }
9

10 revokableFoo = mkRevocable(foo);
11 bob.bar(revokableFoo.wrapper)
12 revokableFoo.revoke();

The mkRevocable function takes a function as an argument and returns an object with
two functions: wrapper and revoke. The wrapper can be passed to other objects, in
this example to Bob, who can then proceed to interact with foo. If Alice later regrets
that decision because Bob started to act strange, she can call the revoke function which
she kept to herself. Then revoke will set the function in the closure to null, making
all further requests to the wrapper by Bob unusable.

Membrane Listing 2.3 shows an example for the Membrane pattern. This can be used,
for example, at the edges of the program architecture, where input and output with the
real world has to be provided. Membranes then can be used to reduce the authority
within the program by limiting the surface of available powerful capabilities.

Listing 2.3: Membrane example in JavaScript

1 function mkReadOnlyFile(file) {
2 return Object.freeze({
3 read: file.read,
4 getLength: file.getLength
5 });
6 }

The function mkReadOnlyFile takes a file object as an argument and returns a new
object that only exposes a subset of the original available functions.

8



2.1. Capability-based Security

Sealer Listing 2.3 shows an example for the Sealer pattern. This can be used to securely
transfer data between multiple objects without revealing the content to everyone involved.

Listing 2.4: Sealer example in JavaScript

1 function mkSealer() {
2 let sealed = new WeakMap();
3 return Object.freeze({
4 seal: function (data) {
5 const box = {};
6 sealed.set(box, data);
7 return box;
8 },
9 unseal: function (box) {

10 return sealed.get(box);
11 }
12 });
13 }
14
15 // Alice
16 sealer = mkSealer();
17 bob.foo(sealer.seal);
18
19 // Bob
20 secretForAlice = sealer.seal("Hunter2");
21 carol.bar(secretForAlice);
22
23 // Carol
24 alice.baz(secretForAlice);
25
26 // Alice
27 secretFromBob = sealer.unseal(secretForAlice);

Similar to the counter example, the mkSealer function uses sealed as private state.
The variable sealed is a WeakMap, a key/value store, where objects are keys; it is
also not enumerable. It returns an object with two functions: seal and unseal. seal
expects an argument called data and creates an empty object called box. The object
identity of box is then used as key for sealed and data is used as value. The variable
box is then returned to the caller. The function unseal takes a box as an argument
and uses it to extract the value from the map.

In the example, Alice passes a sealer to Bob. Bob can use this sealer to send Alice a
secret. Bob does not have a reference to Alice but Carol has and Bob has a reference to
her, so he sends Carol his box called secretForAlice. Carol, having no access to the
unseal function, cannot see which secrets are being passed around and sends the box
to Alice. Alice can access the secret by calling unseal with the provided object key.

9



2. Background

In a sense, this is an example for public/private key cryptography, protected by the
runtime of the programming language, instead of real cryptographic primitives. The
functions seal and unseal are the public and private key. The data argument is the
plain text, while box can be seen as ciphertext.

Limited Use Listing 2.5 shows an example for the Limited Use pattern. This is a
variation of the Revoker pattern, where we restrict the longevity of object capabilities.
Instead of having an explicit revoke function, it has a built-in counter state that gets
reduced by one each time the wrapped function is called.

Listing 2.5: “Limited Use” example in JavaScript

1 function mkLimitedUse(numOfInvocations, fn) {
2 let usages = numOfInvocations;
3 return Object.freeze({
4 use: function (...args) {
5 if (usages > 0) {
6 fn(...args);
7 usages--;
8 } else {
9 return;

10 }
11 }
12 });
13 }

These patterns also compose very well together. For example, to create a one-time
use, read-only, revocable file capability, these constructions only have to be stacked:
mkLimitedUse(1, mkReadOnlyFile(revokableFile)).

In the end, it all boils down to two guiding principles that allow to reduce authority in
program development and, furthermore, reduces the risk of intentional or accidental bad
behavior:

1. No usage of global mutable state. This enforces that mutable data must be passed
explicitly between objects, allowing to control the flow of authority, thus, reducing
the amount of potentially malicious actors in a system, who can manipulate a given
piece of information.

2. Only controlled communication with the outside world. Interactions involving input
and output should be wrapped at the edges of the program’s architecture, providing
a safe subset of possible functions. This allows that OCAP rules can be enforced
within the program itself, while possibly dangerous code sections stay small and
auditable.
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2.2. Identity-based Security

User /etc/passwd /home/alice/secret.txt /home/bob/shared.txt
Alice (read) (read, write) (read)
Bob (read) () (read, write)
Carol (read) () ()

Table 2.1: Access Control Matrix example

These principles are sometimes easier, sometimes harder to follow, depending on the
programming language and tooling in use. For example, languages that do not support
higher-order functions, functions which can accept other functions or have functions as
return value, must fall back to alternatives like the Command Pattern [16].

2.2 Identity-based Security
An ACL is a list of permissions associated with an object. It specifies which subjects
are granted access to it and which operations they are allowed to perform. One way
to visualize this is as columns in an Access Control Matrix. We will use the model as
described by Lampson [17].

Table 2.1 shows an example with three objects and three subjects. User Alice is allowed
to read the file /etc/passwd, read and modify /home/alice/secret.txt, and,
because Bob gave her access to it, to read /home/bob/shared.txt. Bob is allowed
to read /etc/passwd and to read and write to /home/bob/shared.txt. Carol has
the least permissions and can only read /etc/passwd.

Multics was one of the first operating systems that featured access-control lists for file
system permissions [4]. Current operating systems usually allow to set three classes of
access: read, write, and execute. Some also use an additional owner attribute. In Linux,
a file has an associated owner and a group and permissions can be set per owner, per
group, and for all other users.

There are other identity-based authorization models, like Role-based Access Control [18]
(RBAC) and Attribute-based Access Control [19] (ABAC). For our purposes their differ-
ences are not significant, so we will use ACLs as umbrella term for identity-based access
control for the rest of this thesis.

These models have deficiencies when more than two subjects are involved. When passing
through multiple subjects, information is missing that is required for correct access
decisions. When Alice asks Bob to change a file for her at system C, she hands over a
data string, for example, a file path. Bob faithfully complies and applies the requested
change to the file at the given file path. System C, receiving a write request from Bob,
verifies that he has the necessary authority to perform this action. In this scenario, Alice
is able to name a file path that she has no access to but where Bob is allowed to apply
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changes. The ACL model is unable to authorize correctly in a multi-party system [20].
Exploiting this is also known as a Confused Deputy attack [21].

2.2.1 Comparison of ACL and OCAP

Miller et al. [15] described seven security properties to distinguish between the ACL and
OCAP model with the purpose to clean up a lot of misconceptions which surrounded
capability-based security for decades.

Property A. No Designation without Authority: All ACL models require some
kind of shared namespace to designate resources so that subjects can name them. This
reference must necessarily be independent from the representation of authority. Shared
namespaces allow subjects in ACL systems to name arbitrary resources. This not only
allows them to designate resources they have not been given access to by using known
values but also to guess the names of resources. In a capability system, subjects hold
references to objects. Each capability can consequently serve both as designation to the
resource and as the set of permissions. This property allows capability systems to omit
the need for a shared namespace.

Property B. Dynamic Subject Creation: Consequently, ACL systems also require
a shared namespace in which to refer to subjects. The lists have to be continuously kept
up-to-date about the set of subjects and resources. As subjects come and go, ACLs tend
to prefer coarse-grained subjects like operating system accounts. This is not dictated
by the ACL model itself but rather a consequence of applying a static model in a
dynamic environment. In addition, usually only subjects with administrative privileges
are allowed to create new subjects. In a capability system, capabilities are aggregated
by subjects, which allow them to be defined on a fine granularity. Capability systems
usually differentiate between single instances of a software component, like an object in a
programming language or a running process of a program.

Property C. Subject-Aggregated Authority Management: ACL systems usually
have an owner or edit property that allows subjects to edit the ACL for that particular
resource. To restrict access to a resource, the subject needs the authority to change
the whole ACL. Subjects in capability systems have their own capability lists and each
subject can manipulate the authorities in their list.

Property D. No Ambient Authority: In ACL systems, a subject is usually not
required to choose a specific authority. They only name a resource and the system handles
the act of choosing the authority and performing the authorization. This is called Ambient
Authority. With capabilities, by choosing to use a particular capability, the subject decides
to exercise this authority. Thus, ambient authority is not required in a capability system.
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Property E. Composability of Authorities: Subjects and resources are separated
in an ACL system. Subjects cannot designate other subjects and cannot modify their
authorities, as they are only aggregated by resources. In capability systems, subjects are
also resources and resources are conceptually subjects. This allows to unify access and
authorization and enables these systems to have deeply nested networks of relationships.

Property F. Access-Controlled Delegation Channels: Delegation in ACL systems
requires a subject to have the authority to change the ACL of a resource. They cannot
delegate authority directly to another subject. Having access to a subject or a resource
by possessing the capability for it is a prerequisite in capability systems. When Alice
wants to delegate authority to Bob, she has to possess a reference to him.

Property G. Dynamic Resource Creation: Unlike property B, ACL systems have
no problem with dynamically adding new resources. The same is true for object capabilities
but not all capability systems work like this. POSIX capabilities, for example, only provide
a bounded set of flags which can not be extended or reduced.

Property Model

ACLs as columns

POSIX capabilities

Unix file descriptors

Object capabilities

A: No Designation without Authority � � � �
B: Dynamic Subject Creation � � � �
C: Subject-Aggregated Authority Management � � � �
D: No Ambient Authority � � � �
E: Composability of Authorities �� � �� �
F: Access-Controlled Delegation Channels �� �� �� �
G: Dynamic Resource Creation � � � �

�=holds property; ��=unspecified or workaround needed; �=does not hold property

Table 2.2: Comparison of ACLs, POSIX capabilities, file descriptors, and OCAP with
respect to the seven described security properties; based on Miller et al. [15].

Table 2.2 shows a comparison of different security models. POSIX capabilities and Unix
file descriptors were added to this comparison because these systems are likely to be more
familiar to the reader. Property E and F are not specified for the ACL model. POSIX
capabilities are the only model missing property G because they only provide a fixed
set of resources and only provide coarse-grained permissions. With Unix file descriptors
property E can be implemented with pipes, while F holds but only by using ACLs. Object
capabilities hold all described security properties.

Property B and G are required for the principle of least authority. We want to grant
minimal subjects access to minimal resources. For this, we need to dynamically create new
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subjects and resources as required. Systems with property B but not E are not capable
of revoking delegated rights, while systems with B but not F cannot confine delegated
rights. Property D is crucial for preventing confused deputy attacks.

For a better understanding of how object capabilities would change the user experience
in the context of desktop applications, assume the following situation: Alice wants to
open a file in an editor. On current operating systems, the process looks as follows: Alice
is logged-in and every action she triggers is performed with the authority of her user
account. Applications that she starts run with the full authority she possesses. Alice
opens the file manager, navigates to the file she wants open, and clicks on it. The default
application, associated with the file extension, is automatically opened and the file path
is passed to it. The application, running with the same authority as Alice, requests the
operating system to open the file designated by the given file path. The request gets
granted, and Alice can now edit the file in her editor.

This approach entails risks. Because the application is running under the same user
account, it can do everything Alice is allowed to do. It can open other files in the
background, search for secrets, encrypt all private data, or send copies of them over the
internet. The application can do this because Alice can do this.

We now compare this to the capability-based approach. Alice opens her file manager.
The file manager is part of a trusted computing base, which is given more authority than
usual, and is able to display and open all files that Alice has access to. Keeping this
trusted base small helps lowering the attack surface of the system. Alice clicks on the
file she wants to edit and the associated application is started. Instead of passing the
file path to the application, the file manager first opens the file itself and receives a file
descriptor from the operating system. This file descriptor, a capability, is then passed
to the application. With no additionally granted authorities, the application is confined
and can only read and edit the single file that was passed in. It cannot cause other harm
on the system. This also allows Alice to use features that are usually associated with
increased risks, like running third-party macros which help her editing the file [12].

2.3 The E Programming Language
The E programming language was created by Electric Communities, originally as a set
of extensions to the Java Virtual Machine [22][23]. It was used to create WorldsAway2,
an online graphical virtual world, based on LucasFilm’s Habitat3, which was one of the
first graphical Massively Multiplayer Online Role-playing Games (MMORPG) [24].

E was open-sourced in 1997 and influenced later object capability languages like Joe-
E [25], Pony [11], or Monte [26]. Unlike Java, it is an dynamically typed language and
uses expressions over statements exclusively, which means that every function call returns
a value. It was designed for secure distributed programming and is built for incorporating

2https://www.youtube.com/watch?v=KNiePoNiyvE, Accessed: 2021-09-09
3https://www.youtube.com/watch?v=VVpulhO3jyc, Accessed: 2021-09-09
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the OCAP paradigms described earlier in this chapter. Variables in E are non-assignable,
or mutable, by default and have to be explicitly declared as such with the keyword var.
This is in contrast to languages like Java or JavaScript, where the opposite property
holds, by declaring variables as final or const for them to be non-assignable. In
our JavaScript examples given above, Object.freeze() had to be used so that the
functions in the returned objects could not be modified later on. This is not necessary in
the E language.

E, like Java, has safe pointers so object references are equal to object capabilities. But
Java has mutable static variables which were removed in E. They allow that objects
interact with other objects that are outside their reference graph, breaking the security
model [27].

2.3.1 Darpa Browser

The Darpa Browser is the result of creating a capability-secure web browser that, even in
the case of a maliciously acting render engine, would not cause any damage [28]. It is
written in E and the system consists of three main components: CapDesk, PowerBox,
and CapBrowser.

CapDesk is a secure, distributed file manager. It supports launching document-based
applications and web browsers. CapDesk allows applications at installation time to
negotiate endowments; authority that is automatically granted at launch time, like access
to files that are required for running the application. It recognizes the act of opening a
file as designating a file—the resource—as well as conveying the authority—the ability
to open the resource.

PowerBox is the negotiator between applications and the user. It manages authorities
endowed at installation time and can ask the user for more authority during the execution
of a program. The PowerBox sits between trust boundaries and is written in a manageable
size of code. This increased the confidence into the system, as the rest, although being
larger in size, could not cause damage, as the necessary authority for this was collected
in the audited PowerBox.

CapBrowser is a modular web browser that supports exchangeable HTML renderers.
A malicious renderer was developed that tried to escape the browser’s confinement to
access user data. The project members could demonstrate that the malicious renderer
could indeed not escape its sandbox, while the same renderer, running in an unconfined
version of the CapBrowser, was capable of accessing valuable data.

The rest of the project focused on taming the Java APIs that were used for building this
system. For example, calling new File() allows an application to escape the sandbox,
so they had to made sure that such API calls were not possible.
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2.3.2 Polaris
Polaris is a package for Microsoft’s Windows XP that enforces the principle of least
authority for applications running in it [29]. It is written in E and is an attempt to solve
the problem with ambient authority, while still being able to run on a classic ACL-based
operating system. Polaris includes many techniques previously used by CapDesk, like
utilizing clicking on a file as an act of designation, installation endowments, and the
PowerBox.

Existing applications can be “polarized”, each instance being called a pet. Each pet is
given a pet name, giving the user an opportunity to recognize individual instances, and
can be given several permissions and file extension associations. In the background, a
new operating system user is created per pet, providing the necessary isolation between
them. A user could then, for example, create two pets of a web browser, one for accessing
the internet and one for the intranet, while a third instance is only being able to access
the local file system.

Visual cues, like the title or color of a window’s title bar, are used to signal to the user that
a specific pet is running. When the user opens a file in a polarized application, the file is
copied to a folder where the associated user for that pet has access to it. A synchronizer
manages the changes between the copy and the original file. If the application is malicious
or has malware embedded, the only thing it can access is that single file, leaving the rest
of the user’s files safe.

The effectiveness of Polaris was limited by the interfaces provided by Windows XP. For
example, any application could read every GUI event that was send to any application.
The project never left the pre-alpha phase.

2.4 Capability Transport Protocol
A key property of capabilities is that they are unforgeable. Capabilities are enforced by
a runtime and cannot be faked. If Bob wants access to Carol but Alice has the only
capability to her, Alice has to explicitly pass that capability to Bob. In an object capability
safe programming language, this can be achieved by simple argument passing, where the
Alice object calls the public interface of Bob to pass a reference to the Carol object as
an argument. OCAP languages do not allow pointer manipulation, so object references
are unforgeable [27]. In the context of file management, the Alice process requests a file
handle for the Carol file from the operating system and receives a file descriptor as integer.
Although this descriptor is a plain integer, other processes cannot use it to get access to
the file as the operating system manages a table per process where these descriptors are
recorded. On Linux systems, however, a process can send a file descriptor to another,
potentially lower privileged, process over a local AF_UNIX socket by using the sendmsg
syscall4. These methods work only on a single machine or within a single runtime of a
programming language though.

4https://linux.die.net/man/7/unix, Accessed: 2021-09-06
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A Capability Transport Protocol (CapTP) allows to continue programming in an object
capability oriented style but in a distributed environment. The programmer can continue
working with objects and on the interactions between them, not having to care about
them being local or on remote machines, while CapTP transparently manages the network
interactions in the background. In comparison, usually applications are designed in a
“local first, one process” style and are later heavily restructured to allow being run in a
distributed setup. CapTP abstracts the latter away so programs can be written in the
former, easier to reason about style [30].

In many OCAP languages and frameworks, like E, Goblin [31], or Monte, objects live in
communicating event loops called Vats. Each system can host multiple vats, and each vat
can host multiple objects. Objects can perform synchronous functional calls only within
the same vat, but all objects, regardless of whether they are in the same or a remote
vat, can communicate by asynchronous messages. These languages implement the actor
model which provides a foundation for concurrent programming [32]. Each object, or
actor, can send asynchronous messages to other actors as long as they have access to
their addresses. Typical for actor model languages, messages are handled sequentially,
providing temporal isolation from each other and avoiding certain problems associated
with concurrent programming, like race conditions [33].

This process is also similar to how JavaScript’s event loop and promise functionality
work. That is no coincidence, as many people who worked on E and its promises were
and are participating in the development of modern JavaScript [34]. Erlang and Elixir
can also be seen as object capability languages: they are type-safe languages, implement
actors, process IDs are unforgeable capabilities, and each process has its own separate
state as there is no global scope. Data can only be shared with explicit messages and
actors can only send messages to process IDs they possess [27]. These messages can also
be sent over the network to other Erlang or Elixir nodes, demonstrating some form of a
capability transport protocol [35].

The rest of this section describes how CapTP works in E specifically.

2.4.1 Pluribus
Pluribus is the name of E’s capability transport protocol. It is used for communication
between vats and allows to work over mutually suspicious networks. Trust cannot be
guaranteed across server boundaries, so Pluribus is built with that assumption to work
without full trust [27]. Assume that we have object Alice on VatA and object Bob on
VatB and that Alice sends data to Bob. There is another object on VatB, Carol, who
Bob trusts and with whom he shares data given by Alice. This is correct behavior and
works as expected. Now assume that VatB is misbehaving, runs on untrusted hardware
or software, or an unsafe language like C++. A malicious actor called Malice can now
steal data from Bob. From the perspective of Alice, nothing has changed; the situation is
the same as if Bob works with Malice voluntarily. If Alice does not want that, she never
hands out that data in the first place.
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Figure 2.1: Distributed access control in E with Pluribus
Source [27]

Figure 2.1 shows a simplified version of how Pluribus works. There are three participating
vats, each hosting one object. In this scenario, Alice in VatA wants to send Bob in VatB
a message, containing a reference to Carol who lives in VatC. The half circles b1, c1,
and c2 are local proxies managing the communicating with the remote references. The
message sent by Alice is a function call named foo and can be seen in several stages.

1. Alice calls foo on the local proxy b1 in VatA. c1 is passed as an argument to
foo.

2. b1 serializes the message and turns it into a network message for VatB.

3. VatB deserializes the message and performs a handshake with VatC to create the
local proxy c2.

4. If the creation of c2 was successful, foo is finally passed to Bob.

Sending capabilities over the network cannot give the same security guarantees that
we have with a shared trusted platform like an operating system or a programming
language runtime. CapTP in E works on top of Transport Layer Security (TLS) to get
most of the benefits of safe pointers back. Integrity is guaranteed by secure cryptographic
signatures. Confidentiality is guaranteed by encryption. Unspoofability is guaranteed by
authentication, using public/private key pairs. Unforgeability cannot be guaranteed and
is replaced by unguessable IDs which we will explain shortly.
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When a vat is created, it generates a public/private key pair for authentication. The
public key is its identity called VatID. When two vats perform a handshake, they verify
that the other vat has the corresponding private key for its VatID. The search path is a
list of IP addresses where the vat can be found. When an object is exposed externally for
the first time, an unguessable cryptographically secure random number is generated; this
is called a Swiss number and represents the identity of the object. In step 2, when b1
serializes the function call with c1 as an argument, the reference to Carol gets converted
to a triple with her VatID, the search path, and her Swiss number. Objects in one vat can
only communicate with objects in other vats when they know their Swiss number. The
triple can also be serialized into a string and be communicated out-of-band over another
secure channel. It can also be used for persistence and to bootstrap vats after a restart.

CapTP implementations like Pluribus also have two other useful features: Promise
Pipelines and Distributed Acyclic Garbage Collection (DAGC).

Promise Pipelines: If multiple remote calls are required for some functionality, multiple
round trips over the network are required for this to work. This adds latency to the
system which at some point cannot further be reduced, as it is limited by the speed of
light. Promise pipelines allow to reduce that latency. Promises are placeholders for values
that are not yet present but which can already be used to specify further actions. This
allows to send a sequence of actions to a remote target while reducing the amount of
round trips to one with the final value [36].

Distributed Acyclic Garbage Collection: DAGC is cooperative garbage collection
over several connected parties. It allows servers to communicate that it is safe to drop
object references which are no longer required by any participating party. This helps
reducing the required amount of storage for holding remote references [37].

2.5 Waterken: Web-Key
In the traditional web security model, resources are referenced by an URL. The request
is then enhanced by the browser by adding a cookie which contains some kind of token.
This token is used on the server-side to verify, if the request is authenticated or not. The
token itself is a proof, given by the server to the client, that some kind of authentication
ceremony, like a login, was performed. The authorization check on the server is then
based on the identity of the caller.

This model has several drawbacks. As designation is separated from authority, every
request is always performed automatically with the full authority of the user. This allows
the possibility of confused deputy attacks, like Cross-Site Request Forgery (CSRF) [38]
or Clickjacking [39]. Both attacks have in common that an attacker tries to trick the
user’s browser directly or indirectly to perform requests on their behalf. They only have
to state an URL as the destination and the browser will provide the cookie for the user.
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In a CSRF attack, an attacker lures an user to send requests to another server they did
not intend to. Some action gets triggered when the user opens the web site, created by the
attacker. This can be, for example, an HTTP POST request sent in the background that
changes state on the target server. CSRF attacks work because the browser is implicitly
attaching cookies to requests if it has some for the target domain. For this to work, the
user has to be logged in at the target website. One way to prevent this attack is by
requiring a secret token per user that needs to be attached to the request. This token can
be included in the HTML form as a hidden field. An attacker would then have to know
this secret value before they can prepare a malicious website. The Same-Origin Policy
(SOP), a core security measure implemented in browsers, prevents them from reading
any responses from other origins.

Classic clickjacking attacks work by designing the attacker’s website in a way that the user
thinks they click on buttons on this page but they actually click on a hidden embedded
page behind it. This works for the same reason described for CSRF attack. The most
common solution to prevent this attack is by setting HTTP headers which indicate that
the target web page cannot be embedded in other origins. But this also prevents good
behaving web pages from integrating these sites.

Waterken was an open-source web application server, developed at HP Labs, that imple-
mented a concept called Web-key [40]. Waterken itself was at one stage implemented in
Joe-E [25], a capability-safe subset of the Java programming language. Web-keys are a
way to transport capabilities on the web by using URLs with access tokens. Designation
and authority are combined in a single URL, therefore, eliminating the risks of confused
deputy attacks. As an attacker would need to know the appropriate access token to
perform the attack, they could, at this stage, perform the request themselves.

Web-keys are a way to transport capabilities over HTTPS, but as this is not a capability
transport protocol it does not provide all the necessary security requirements and has
several drawbacks. Mainly, the property of unforgeability is missing and it is replaced
with unguessability. We provide a comparison of different methods to transmit data over
HTTP in 4.4 Protection Level of Web-keys while new proposals are shown
in 6.1 New URI Schemes.

When web-keys were originally proposed, they used cryptographically secure random
generated bit strings with a length of 64 characters. They were seen as having enough
entropy to protect against brute force attacks, while keeping them short enough to
allow transcription of URLs. To transmit them over HTTPS, they were Base32-encoded
resulting in a final length of 13 characters.

These tokens are then transmitted as part of the URI fragment. The fragment was chosen
to avoid leakage of the tokens in the HTTP referer [sic] header. The referrer header
gets attached to a request by a web client when browsing to another web page, containing
the link where the hyperlink was displayed. Thus, when linking to a third-party web-page,
the referrer would then include the access token in the URL. RFC 2616, which specifies
HTTP 1.1, states that clients must not include the fragment in the referrer header [41].
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But the fragment is also not send to the server when opening the link. To restore
functionality, JavaScript is used to extract the token from the fragment. A second request
is then made by JavaScript in the background attaching the token as part of the query
string which the server then can parse. Creating a request like this does not result in
the creation of the referrer header. Modern web applications have more control over this
default behavior of browsers by setting the HTTP Referrer-Policy [42]. This policy
can be used to completely disable the creation of the referrer header or to only send it
for same-origin requests. (and several other constellations) Thus, by utilizing the correct
referrer policy the requirement on JavaScript can be lifted again, as using the query
string directly in an URL is not prone to that leakage anymore.

2.5.1 Deep Linking

Web-keys, in contrast to cookie-based authentication, can be used to create privileged
URLs. Different web applications can work together by freely embedding pages with
web-keys and linking them, without the restrictions of the same-origin policy.

Compared to the solution for cross-site request forgery attacks, where the security measure
against them relies on the protection of the same-origin policy (the hidden token is not
readable by other origins), web-keys do not require it as the URL itself is the unguessable
secret.

By representing capabilities as URLs, users are allowed to use tools they already know to
manage them, for example, the bookmark manager integrated in the browser. As users
can store authorized links, they are not required to come up with their own passwords
and secrets, reducing the need for login pages. Web applications that can be used without
a login are resistant to phishing attacks.

2.6 OAuth 2.0
The Open Authorization protocol version 2.0 (OAuth 2.0) [43] is one of the most popular
protocols to implement Single Sign-On (SSO) [44]. It is the successor to OAuth 1.0 and
was released in October 2012 as RFC 6749. This protocol allows the owner of a resource
to give third-party applications limited access to an HTTP web service, where resource
data are provided. During the process, the resource owner obtains access tokens from the
authorization service which can then be passed over to the third-party application which
in turn then uses these tokens to access the protected resources hosted on the resource
server. These tokens can be limited in scope such that authority is reduced to a minimum
and can be revoked. This allows the delegation of authority without the need to provide
full credentials like username and password to potentially untrusted parties.

Together with OAuth 2.0, RFC 6750 [45] with the title “The OAuth 2.0 Authorization
Framework: Bearer Token Usage” was released. This document describes how the access
tokens mentioned above should be transferred to prevent misuse and to protect them,

21



2. Background

for example, by making TLS mandatory. There are three ways to send authenticated
requests in OAuth:

1. Using the Authorization HTTP request header, prepended by the string Bearer.
This can look like this: Authorization: Bearer abc-123.

2. As part of a form-encoded HTML body parameter. The parameter is named
access_token. It is recommended to prefer method 1, if possible.

3. As HTTP URI query parameter called access_token. This method is discouraged
because of the security issues associated with it. See 4.4 Protection Level
of Web-keys for our comparison.

The key difference between an OAuth bearer token and a capability is that bearer tokens
are not bound to a reference to the resource and are, thus, still susceptible to confused
deputy attacks. Some suggested solutions for that problem can be seen in Section 6.1 New
URI Schemes. Both techniques are examples for explicit authorization compared to
implicit authorization by web cookies.

2.6.1 Authorization Code with PKCE Flow
OAuth 2 provides several flows, each specifying how to request access tokens, adapted for
specific use cases. Most of them are now considered to be obsolete, as newer, more secure
flows can replace them. Authorization Code with PKCE is currently one of the secure
flows according to the OAuth standard and is, furthermore, the recommended flow for
the upcoming OAuth 2.1 standard [46].

This flow has three interacting parties: A resource owner, a client app, and an authorization
server. Using the access token for fetching resources involves other parties. The resource
owner is usually represented by an user agent, a web browser, performing the actions
for the user. It accesses the client app which in turn first generates a random secret.
The hash of this secret is then returned to the browser using a cryptographically secure
algorithm, in this case SHA-256. The browser then redirects to the authorization server
with the hash which gets stored. The user submits their credentials for the login and
upon success the authorization server redirects the browser back to the app with an
authorization code. The app now has everything to request an access token. It contacts
the authorization server with its client ID, the original secret, and the authorization code.
The authorization server verifies the validity of the secret by performing the same hash
algorithm and if client ID, hash, and code match it finally returns the access token to
the app. Figure 2.2 presents a graphical representation of the flow.

In this flow, several redirects are performed, implying that secrets are transmitted in
the query string so a similar security level to web-keys should be expected. But several
mitigations are in place to reduce the attack surface. The generated secret, its hash,
and the authorization code are one-time use and have to be regenerated for each new
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Resource Owner Client App (vue.js) Authorization Server

1. Access App

create random (v)
$ = sha256(v)

2. Redirect with $

3. Redirect to Login with $

store $

4. Returns Login Form

5. Submits Credentials

authenticate user

6. Redirect with code (α)

7. Redirect to App with code (α)

8. Request Token

request includes:
Client ID, (v), (α)

validate:
- Client ID
- sha256(v) = $
- (α)

9. Return Token

Resource Owner Client App (vue.js) Authorization Server

Figure 2.2: OAuth authorization code with PKCE flow.
https://developer.okta.com/blog/2019/08/22/okta-authjs-pkce

authorization request. In addition, the code is also short-lived to reduce the open time
window for attacks. Access tokens themselves are usually also short-lived. When they
expire, either a new authorization flow is started, or refresh tokens are used. Each time
an access tokens gets returned a refresh token is returned too. They are long-lived and
are also only valid for a single use. When the access token expires, the refresh token can
be used to get a new pair of tokens, thus, not requiring the user to login again.
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2.6.2 Rich Authorization Requests
Although OAuth provides scopes to limit the authority of access tokens, they are still
very static and can only be used for coarse-grained permissions. Rich Authorization
Requests [47] (RAR) is an extension that allows for fine-grained authorization grants.
This allows for scenarios like: “Give me a token that let me send 123 Euro to the
account with the IBAN abc.” Requesting such tokens can be done by using the new
authorization_details request parameter. It contains serialized JSON with one re-
quired field: type, which specifies the authorization data as a string and which determines
the other allowed fields in the JSON.

Listing 2.6: Rich Authorization Request example

1 [
2 {
3 "type": "payment_initiation",
4 "actions": [
5 "initiate",
6 "status",
7 "cancel"
8 ],
9 "locations": [

10 "https://example.com/payments"
11 ],
12 "instructedAmount": {
13 "currency": "EUR",
14 "amount": "123.00"
15 },
16 "creditorName": "Merchant123",
17 "creditorAccount": {
18 "iban": "abc"
19 }
20 }
21 ]

The draft also defines a set of common fields that may be part of the JSON, depending
on the type, but additional fields can also be used:

• locations: Strings representing the locations of resources or resource servers;
typically URIs

• actions: Strings representing which kind of actions to be performed on the
resource

• datatypes: Strings representing which data types are requested from the resource
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• identifier: ID of a resource

• privileges: Strings representing the levels of privilege that are requested

Listing 2.6 shows the request for a token that fulfills the scenario described above. These
fine-grained access tokens, in combination with 6.1 New URI Schemes, could lead
to a secure exchange of capabilities on the web.
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CHAPTER 3
Eselsohr—A Case Study on

Capability-based Security

This chapter describes the implementation of a web application prototype, which capability-
based techniques were used, and which benefits they bring in. This demonstrates how
the concepts described in the previous chapter can be used in practice to improve the
overall quality of application code.

Eselsohr is a web application created during the course of this thesis to gain a better
understanding of the practical applications of capabilities-based techniques. It will also
be used for the model evaluation and will be compared against ACL-based projects with
similar features. The prototype implements a simple bookmark manager where URLs
can be stored in collections, which can be shared with other people.

Eselsohr supports the following features:

No Requirement for User Accounts: Eselsohr does not require users to register
before they can use the web application. Performing privileged actions is done by providing
access tokens in URLs.

Support for Multiple Collections: A single Eselsohr instance can handle multiple
collections without any concept of an account. Access is granted by authorization, which
does not require authentication.

Data Can Be Shared Between Instances: Eselsohr implements file-based persis-
tence. The same URL can be used on multiple instances as long as all those instances
have access to the referenced file.
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Shareable Permissions: Access to a collection is granted with URLs. New URLs with
reduced permission sets can be created by people. Links can also expire or be revoked by
their owners.

Simple Embeddability: Privileged Eselsohr actions can be integrated into other web
applications. This is possible because the designation of a resource is coupled with the
authority to perform the action.

Scalable: Eselsohr uses concurrent and parallel programming techniques on a per-
collection basis. By passing in capabilities, which allows for side-effects, managing concur-
rent code is made easier compared to traditional approaches with shared mutable state,
locks, and mutexes.

Easy Deployment: Eselsohr is distributed as a statically-linked binary with no external
runtime dependencies. This makes this service comparatively easy compared to other,
more complex setup guides. During development, this was a key factor and several design
choices are based on it, for example, the reduced use of cryptography to avoid the need
for key rotation.

The following sections describe how a capability-based approach is used in different layers
of the application to provide features, improve maintainability, or security. The goal is to
reduce the ambient authority and stick to the principle of least authority.

3.1 Purely Functional Programming in Haskell
Haskell is a statically typed, immutable by default, purely functional programming
language with lazy evaluation [48].

• Statically typed means that the type checking, that proofs the soundness of the
program, happens at compile time.

• Immutability means that once a value has been created it cannot be modified
afterwards. A change to a value is equivalent with creating a copy of it with the
new value applied.

• Functional purity means that a function always provides the same output for the
same input. This implies that functions only work with their input arguments, do
not depend on global state, and do not perform any side-effects, like printing to a
console, writing to a file, sending a request to the internet, etc.

• Lazy evaluations means that the evaluation of an expression is delayed as far as
possible. This is made easy with pure functions, as their result do not depend on
the evaluation order.
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One unusual aspect of Haskell is its explicitness on side-effects. All side-effects must
happen in the IO data type.

Listing 3.1: “Hello, World!” example in Haskell.

1 main :: IO ()
2 main = putStrLn "Hello, World!"

Listing 3.1 shows a simple “Hello, World!” program in Haskell. The function putStrLn
prints the given string to stdout. As printing to the console is a side-effect, the return
type of this function must be IO, everything else will result in a compilation error. Once
in IO, all side-effects are permitted.

Another restriction is that impure functions can call pure ones but not vice versa. The
IO type is tainting and has fewer benefits than pure functions have, like composability,
determinism, and the property to test them in isolation. Therefore, Haskell programmers
tend to design their applications in a way that puts their pure logic at the core of the
application, while interacting with the outside world via a thin layer of impure functions.
This architecture pattern is also known as “Functional Core, Imperative Shell” [49].

Although Haskell is a functional programming language and does not have a concept of an
object, many object capability patterns can still be applied with some modifications. As
object capability languages also try to achieve functional purity [50], Haskell’s strictness
on the separation between values and effects fulfills this goal.

Eselsohr uses types in two ways as a kind of capability to achieve the principle of least
authority: as access tokens within the runtime and to limit the possible effects it can
have.

3.1.1 Types as Capabilities
As described in 2.6 OAuth 2.0 external authorization systems work like this:

1. A client wants to access a resource. They must proof that they are authorized to
do this.

2. The client presents claims, like their identity and the requested scope, to an autho-
rization service.

3. This service performs the necessary authorization checks and returns a cryptograph-
ically signed token to the client.

4. The client presents this token to the resource service, which verifies the validity of
the token before the service allows access to the requested data.
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Types can be used to simulate this behavior without using any cryptography but are
secured by the runtime of the language [51]. This can be achieved by using types with
private constructors, which are functions that can create values of that specific type but
which are not exported outside of their respective module. Other modules, therefore, can
not create values of that type directly but have to use the exported constructor function.
Within this private constructor, all necessary authorization checks can be performed.

A privileged function, such as a database accessing one, would then not require plain
values as arguments but values that are members of such authorization types. These
types can be unwrapped to access the required argument to perform the requested action.
Values of such types work as a proof that the required authorization check has happened
in the past as immutability guarantees that no change could have happened in-between.

Listing 3.2: Example authorization module

1 module Authorization
2 ( AccessToken
3 , AccessArticle(..)
4 , DeleteArticle(..)
5 , getData
6 , accessArticleToken
7 , deleteArticleToken
8 )
9 where

10
11 {- import required types and functions -}
12
13 -- | Constructor of the 'AccessToken' type
14 newtype AccessToken a = a
15
16 -- | Function to access the wrapped value
17 getData :: AccessToken a -> a
18 getData (AccessToken data) = data
19
20 data AccessArticle = AccessArticle Id
21
22 data DeleteArticle = DeleteArticle Id
23
24 -- | Authorization function that maybe returns
25 -- the requested accesstoken or nothing, depending
26 -- if the checks succeed or not.
27 accessArticleToken ::
28 Id -> User -> Maybe (AccessToken AccessArticle)
29 accessArticleToken articleId principal =
30 if {- perform authorization checks -}

30



3.1. Purely Functional Programming in Haskell

31 then Just (AccessToken (AccessArticle articleId))
32 else Nothing
33
34 -- | Same as accessArticleToken but with different
35 -- checks
36 deleteArticleToken ::
37 Id -> User -> Maybe (AccessToken DeleteArticle)
38 deleteArticleToken articleId principal =
39 if {- perform different authorization checks -}
40 then Just (AccessToken (DeleteArticle articleId))
41 else Nothing

Listing 3.2 shows such an authorization module which handles access tokens. The type
AccessToken wraps a generic type a. Its constructor is not exported from the module.
The exported function getData can be used to unwrap the contained value. The types
AccessArticle and DeleteArticle represent permissions to access or delete articles
from the database respectively. The function accessArticleToken expects an article
ID and an user as an argument and then performs authorization checks. If it succeeds, a
value with the type Maybe (AccessToken AccessArticle) is returned. The same
happens for deleteArticleToken with Maybe (AccessToken DeleteArticle).
The caller of those functions can then decide how to continue depending on the result.
The Maybe type represents potential failure and states that this function can return a
value or not, depending on the given argument. The caller then is forced by the compiler
to handle both possible outcomes. This is a type-safe alternative to null, known in
languages like Java, C, C#, Python, Ruby, JavaScript, and more, where a possible return
value of null is not explicitly stated in the return type of the function. Dereferencing a
null reference results in runtime errors and Tony Hoare called this his “Billion Dollar
Mistake” [52].

Listing 3.3: Example database module

1 module Database where
2
3 {- import required types and functions -}
4
5 getArticle :: AccessToken AccessArticle -> IO Article
6 getArticle token =
7 let (AccessArticle articleId) = getData token
8 in getArticleFromDB articleId
9

10 updateArticle :: AccessToken AccessArticle -> Article -> IO ()
11 updateArticle token updatedArticle =
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12 let (AccessArticle articleId) = getData token
13 in updateArticleFromDB articleId updatedArticle
14
15 deleteArticle :: AccessToken DeleteArticle -> IO ()
16 deleteArticle token =
17 let (DeleteArticle articleId) = getData token
18 in deleteArticleFromDB articleId

Listing 3.3 shows how a module with privileged functions can use these access tokens to
guarantee that the caller performed an authorization check.
The function getArticle is expecting a value of type AccessToken AccessArticle
instead of a plain Id. Therefore, it is not possible to call this function without calling
accessArticleToken before. The token gets unwrapped with the getData function
and the articleId is extracted via pattern matching. Finally, the getArticleFromDB
function is called with the articleId, resulting in the requested effect of fetching the
article. The function updateArticle works the same but in addition expects a new
article argument.
A function which requires a different kind of authority is deleteArticle. It does not
work with the AccessToken AccessArticle privilege but expects a value of type
AccessToken DeleteArticle. The corresponding deleteArticleToken function
also performs different authorization checks.
Some use cases require the unauthorized call of privileged functions, such as the initial
fetching of the user value, as it is required for performing the authorization checks.

Listing 3.4: Function for creating access tokens without authorization

1 unauthorizedAccessToken :: a -> AccessToken a
2 unauthorizedAccessToken permission = AccessToken permission

Listing 3.4 shows a function which takes an argument with a generic type a and puts it in
the AccessToken type. The prefix unauthorized serves as a hint and can be detected
during code reviews or by automatic tooling. Alternatively, unauthorized versions of the
database functions can be provided.
This technique can not only be used for authorization but also for validation of external
data. For example, instead of representing an email address as a String, a specialized
Email type can be created. The constructor of that type guarantees that it follows a
specific pattern, like containing an @ symbol. We can further split this type up into two
separate types, representing a verified email and an email, that the user has yet to verify.
Functions that expect a verified email have static guarantees that the verification step
has been performed.
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The sqlite-simple1 Haskell package, a library for using a SQLite database, utilizes a
Query type, which is used by the functions that execute SQL code. The Query type is
not compatible with regular strings and can not be easily mixed with external user input.
Therefore, proper parameter substitutions must be used.

The Haskell package lucid2 provides a domain specific language to generate HTML.
Again, functions from the lucid package do not work with plain strings and external input
has to be transformed into HTML by calling the toHtml function. This guarantees that
output encoding has been performed.

Using types that enforce invariants and that represent concepts in the domain of the
application is a pattern also known as “value object” in the realm of domain-driven
design [53].

3.1.2 Types for Explicit Side-effects
The IO type gives us too much ambient authority. To achieve POLA, we want to reduce
the possible effects to a minimum. Object capability languages, like Monte, only allow
the import of IO-providing functions at the entry point of a module [26]. These functions
are then passed along as arguments until they get called. This reduces the amount of
side-effects to the ones declared at the entry point.

Eselsohr achieves a similar explicitness by using a custom data type that contains IO
and Haskell’s type class system [54].

To understand how a purely functional programming language can achieve any side-effects
at all, we introduce the concepts of Monads. Monads, originally coming from category
theory [55], are a generalization over sequential control flow. Two functions are required
for a data type to have a monadic interface: one for wrapping any value within the monad
and one for composing functions that output monadic values.

The former is called return in Haskell, while the latter is called bind but most of the
time the infix operator >>= is used. To avoid confusion with the return statement in
imperative languages, the equivalent pure function is used. The implementation also
has to follow the monad laws [56], which are out of scope for this thesis.

To demonstrate how monads can be used to describe sequential execution steps, we will
use Maybe again, which also implements a monadic interface.

Listing 3.5: Functions that return a monadic value

1 validateInput :: String -> Maybe String
2 canonicalizeEmail :: String -> Maybe Email

1https://hackage.haskell.org/package/sqlite-simple, Accessed: 2021-09-25
2https://hackage.haskell.org/package/lucid, Accessed: 2021-09-25
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3 lookupInMemory :: Email -> Maybe User

Listing 3.5 shows three function signatures. All three functions expect a plain value as
input and return a value wrapped in a Maybe, as all of those functions can fail depending
on the input.

Listing 3.6: Function that calls other functions returning Maybe in sequence
without using monads

1 lookupUser :: String -> Maybe User
2 lookupUser input =
3 case validateInput input of
4 Nothing -> Nothing
5 Just vInput -> case canonicalizeEmail vInput of
6 Nothing -> Nothing
7 Just email -> case lookupInMemory email of
8 Nothing -> Nothing
9 Just user -> pure user

Listing 3.6 shows the function lookupUser which takes a String as an input and
returns a Maybe User. This function does not use the monadic interface of Maybe, so
after each function call the Maybe value has to be unwrapped to extract the plain value
contained within. This code is similar to imperative code, where checks are required to
avoid the dereferencing of null.

Listing 3.7: Monad implementation of the Maybe type

1 instance Monad Maybe where
2 return x = Just x
3 (Just x) >>= f = f x
4 Nothing >>= _ = Nothing

Listing 3.7 shows an implementation of the monad interface for the Maybe type. When
the function return gets called with a value x it gets wrapped in a Just. When bind
is called with a function f and a Just value x, then the value is applied as an argument
to the function. If the given value is Nothing, then Nothing will be returned, therefore,
short-circuiting the remaining function executions. With this we can now rewrite the
example from listing 3.6 as follows:
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Listing 3.8: Function that calls other functions returning Maybe in sequence
using monads

1 lookupUser :: String -> Maybe User
2 lookupUser input =
3 validateInput input
4 >>= \vInput -> canonicalizeEmail vInput
5 >>= \email -> lookupInMemory email
6 >>= \user -> pure user

Listing 3.8 shows how monads can be used to compose functions that return a monadic
value. The values on the right hand side of the bind operators are lambda expressions,
binding the result of the previous function to a new name, which can be used as an
input for other functions. If any function in that chain returns Nothing, then the whole
function returns Nothing.

Haskell provides syntactic sugar, the do-notation, which allows writing monadic functions
in an imperative-looking way. The code in listing 3.9 desugars to the code seen in
listing 3.8.

Listing 3.9: Function that calls other functions returning Maybe in sequence
using do-notation

1 lookupUser :: String -> Maybe User
2 lookupUser input = do
3 vInput <- validateInput input
4 email <- canonicalizeEmail vInput
5 user <- lookupInMemory email
6 pure user

The IO data type uses the same mechanism to represent this “do this, and then this, and
then this” semantics, but for side-effects. The Haskell program itself can stay functionally
pure as only the sequential steps are described but not executed. The Haskell runtime,
which executes the program, is impure and exchanges data with the outside world. IO’s
data constructors are not exposed outside of its module so values wrapped in IO cannot
be extracted3. This is why impure function calls are tainting.

Haskell’s mechanism to generalize behavior and patterns, like monads, over multiple
data types is called a type class. Examples of other type classes are Eq, for checking

3Escape hatches like unsafePerformIO are ignored for simplicity. They are required for some use
cases but have to be used with care, hence the prefix unsafe.
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equality; Ord, for checking the ordering of elements; or Num, for numeric operations. For
our purposes, type classes can be seen as similar to interfaces in object-oriented languages.

Listing 3.10: Type class of Eq

1 (==) :: a -> a -> Bool
2 (/=) :: a -> a -> Bool

Listing 3.10 shows the type class of Eq, which includes the equal (==) and not equal (/=)
functions.

Listing 3.11: Type signature of a polymorphic function with Eq constraint

1 uniq :: Eq a => [a] -> [a]

Listing 3.11 shows the type signature of a polymorphic function called uniq which,
similar to the Unix command-line tool, removes repeated adjacent lines in a list of as. It
works with any type a as long as the type has an implementation of the Eq type class.

To reduce the amount of possible side-effects in our program and to simulate the approach
taken by object capability languages, Eselsohr uses a custom monadic data type and type
classes to explicitly declare all possible side-effects per function.

Functions that work with side-effects use, instead of returning in IO directly, a generic
type m. This type is then constrained by type classes that represent effects. The business
logic of the application, thus, stays polymorphic and can be either completely pure or
emit effects depending on the data type that implements those type classes. This custom
data type is called the App monad in Eselsohr.

Listing 3.12: Example function showing effect type classes for a custom monad

1 createArticle :: (MonadScraper m, MonadTime m)
2 => Uri -> m Article
3 createArticle uri = do
4 aTitle <- scrapWebsite uri
5 aCreated <- currentTime
6 pure (Article aTitle uri Unread aCreated)

Listing 3.12 shows such a function. Here, createArticle takes an Uri as an argument
and returns an Article in the polymorphic type m. This type is constrained by having an
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implementation for the classes MonadScraper and MonadTime. The first class provides
the function scrapWebsite, while the second class provides currentTime.

Listing 3.13: Example effect class representing the access to time

1 import Data.Time (UTCTime, getCurrentTime)
2
3 class (Monad m) => MonadTime m where
4 currentTime :: m UTCTime
5
6 instance MonadTime App where
7 currentTime = currentTimeImpl
8
9 currentTimeImpl :: MonadIO m => m UTCTime

10 currentTimeImpl = liftIO getCurrentTime

Listing 3.13 shows the implementation of the MonadTime class for the App monad,
which uses an IO function from the time4 package. MonadIO is another generalization
and requires our App monad to have the ability to run IO actions.

Only a thin, auditable layer of pure IO functions now wraps the logic of our application.
Environment variables are parsed into a configuration data structure, folders in the
file system are prepared, the App monad gets created, and the web server is started,
which executes our application logic for every incoming request. As type classes turn
into dictionaries with functions as values at compile time, which are then passed along
implicitly [54], we simulate the behavior of object capability languages like Monte, where
passing side-effecting functions happens explicitly. This is also a form of the Sealer
pattern (see 2.1.1), where only functions that were given a specific type constraint can
access the IO functions contained in the App monad.

We conclude that types can be used, similar to capabilities, to improve the security of a
program. The value of the type is the object reference, while the set of functions that
can work with this type are the access rights.

3.2 URLs as Capabilities
Eselsohr uses web-keys (see 2.5 Waterken: Web-Key) to transmit access tokens
over HTTP. This was a compromise in the design decision. As Eselsohr is a web application
that does not use JavaScript, the available options for transferring data are limited. For
a comparison of the several methods, see 4.4 Protection Level of Web-keys.
Web-keys were chosen as they are compatible with a JavaScript-free web application
while still providing an usable user experience.

4https://hackage.haskell.org/package/time-1.12/docs/Data-Time-Clock.html#v:
getCurrentTime, Accessed: 2021-09-25
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Listing 3.14: Example URL to access a single article resource

https://eselsohr.local/articles/example-title?acc=
QMANQJKQCLCDXJT5DITHDRPVMFQF4MN3MCKUBFZVIPHU52S72SPX2CI2GU

Listing 3.14 shows how a single article resource can be accessed via a capability URL.
The acc query parameter is a Base32 and binary encoded Haskell data type containing
the UUID of the referenced file and the capability. Eselsohr does not have a concept of
users; article collections are stored in separated files, and are identified by the access
token. Alternatively, two separate query or path parameters could be used to avoid the
need for binary serialization. The referenced capability has an optional expiration date,
set to one month by default, and contains a reference to a resource, like an overview
page or a single article, including a set of permissions. When an endpoint is called, types
enforce that these permissions have to be checked before the resource can be loaded.
(see 3.1.1 Types as Capabilities)

Users can create new URLs for each page with restricted permissions and expiration
dates, implemented with the Membrane pattern5. (see 2.1.1) This makes it possible to
create, for example, read-only or append-only access to certain resources. Working with
fine-grained permissions allows for dynamic use-cases which are hard to implement in
static, group-based, coarse-grained scenarios. The generated URLs can also be revoked at
any time, giving the owner full control over the access management by using the Revoker
pattern (see 2.1.1).

The initial capability given to a person after creating a new collection is the entry point
to the application. People are encouraged to store that URL somewhere safe, like inside
a password manager. This link to the initial overview page replaces the login page as
people do not have to authenticate themselves to use Eselsohr.

Omitting a central login page grants Eselsohr another property: its resistance to phishing
attacks. By combining the designation and authority into an URL, transmitted over an
encrypted and authenticated HTTPS tunnel, the user agent has the burden to verify the
authenticity of this connection. Traditionally, with usernames and passwords, the user is
responsible to identify if the login form belongs to the right actor.

3.3 Reducing Ambient Authority
The Eselsohr project provides hardening recommendations that reduce the attack surface
of the service. As all common desktop operating systems are based on user-based access
control, this approach does not use object capabilities. It is still a valuable addition to

5A variation of the Membrane pattern had to be used, where a list of permissions is used, instead of
embedding functions directly, as the capabilities had to be serializable for persistence.
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the overall security of the program and shows that the different security models can be
combined together in existing systems.

By minimizing the ambient authority that are available to the running process, exploitation
is made harder, as the attacker is left with less available tooling on the system. As Haskell
allows to build statically-linked binaries, only a minimal set of files is required at runtime.

Eselsohr currently provides two approaches that utilize the namespacing features offered
by the Linux kernel to isolate the process from others:

Hardened systemd Service: When running a program as a service by using a systemd
unit file, several sandboxing options are available. Access to the file system, to the network,
and to kernel APIs can all be limited or completely disabled. This is done by creating
dynamic users per service run, separate namespaces for the file system, firewall rules, and
filtering syscalls. Exploiting the service would gain the attacker only access to an almost
empty system. By only allowing the minimum set of features that are required to run
Eselsohr, the principle of least authority can be uphold.

Minimal Docker Image: Docker images usually use well known Linux distributions
like Debian, Ubuntu, or Alpine as base images and add their packages on top of them. This
results in images that include a large set of packages found in a typical Linux installation,
each one potentially vulnerable or usable by an attacker. So called Distroless6 Docker
images reduce the amount of files to a minimum, only containing what is necessary to
run the application. Statically-linked binaries can even use the smallest available image,
only containing certificates for trusted TLS connection, a /etc/passwd entry for an
user, a /tmp directory and timezone data. It does not come with a shell, no glibc, or any
other common package.

6https://github.com/GoogleContainerTools/distroless, Accessed: 2021-08-24
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CHAPTER 4
Security Analysis of Eselsohr

This chapter describes the security analysis of the implemented prototype, which vulnera-
bility classes can be mitigated by capability-based techniques, and where new challenges
arise.

4.1 Threat Model

As prerequisite for the evaluation of Eselsohr, a threat model was required. Given the
recommendation that this service is primarily meant to be self-hosted by the users we
excluded malicious administrators. Furthermore, as the currently stored data was not
classified as sensitive information, and to keep the deployment simple, more advanced
protection measures like encryption at rest by the application itself were not deemed
necessary. This leaves us with the following list of attackers:

Remote network attacker is an attacker trying to exploit the application, either by
performing social engineering attacks on the victim, or by attacking the public functionality
exposed by the application.

Local network attacker is an attacker controlling the local network, being in a man-
in-the-middle position, or controlling the infrastructure where the application is running
on.

Local physical attacker is an attacker, who either has access to the victim’s device,
or is in physical proximity to observe the victim using the application.
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4.2 Top 10 Web Application Security Risks
The Open Web Application Security Project published their “Top Ten” document the first
time in 2003 and it was updated regularly since then. The goal of this document is to raise
awareness in the developer community about the most common security vulnerabilities
in web applications and how to fix them. The latest version, as of September 10, 2021, is
the OWASP Top Ten 2017 [3], which covers these categories:

A1:2017-Injection: Untrusted user data gets interpreted as code, giving the attacker
(partial) control over the server.

A2:2017-Broken Authentication: Incorrectly implemented authentication and/or
session management, allowing the attacker to exploit identity-based security measures.

A3:2017-Sensitive Data Exposure: Sensitive data are not properly protected and
can leak without elaborate attacks.

A4:2017-XML External Entities (XXE): Misconfigured XML processors evaluate
external entity references in a way such that they can disclose internal files or be used
for remote code execution.

A5:2017-Broken Access Control: Access to functions or data is not properly pro-
tected and can be used by unauthorized users.

A6:2017-Security Misconfiguration: As software commonly comes with insecure
default configurations, the whole application stack needs to be reconfigured securely,
while updates and patches must be applied regularly.

A7:2017-Cross-Site Scripting (XSS): Similar to “A1:2017-Injection”, user input
gets interpreted as JavaScript code or HTML, but the attack is executed in other users’
browsers, not the server.

A8:2017-Insecure Deserialization: Untrusted input from attackers can cause ma-
licious side-effects like remote code execution, injection attacks, or privilege escalation
attacks.

A9:2017-Using Components with Known Vulnerabilities: A vulnerability in
a third-party component gives an attacker the same power as a vulnerability in the
application itself because they all run with the same privileges.
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A10:2017-Insufficient Logging & Monitoring: A lack of logging or monitoring
allows attackers to stay undetected for a long period of time.

Capability-based security does not help with all these problems, so the categories “A4:2017-
XML External Entities”, “A6:2017-Security Misconfiguration”, and “A10:2017-Insufficient
Logging & Monitoring” will not be further discussed in this thesis.

After this security analysis was conducted, the OWASP published the newer 2021 version
of their Top Ten document1. However, the changes do not invalidate the findings of this
thesis. Specifically authorization problems are now ranked even higher than before. This
only highlights the need to rethink authorization in web applications.

4.3 Evaluation Results
A security analysis on the prototype was conducted, where the application was tested for
the vulnerabilities listed above. The OWASP Web Security Testing Guide2 (WSTG) was
used as a guiding document. This covers the most common attacks on web applications.
Protections against those provide a good security base line.

4.3.1 Injection
Any external source of data can be seen as untrusted, as there are no guarantees what
kind of data will be provided. Depending on its usage, untrusted data may be interpreted
as code, resulting in the loss of data, denial of service, or remote code execution. Therefore,
it has to be encoded for the target environment, such that it is only handled as data, not
code.

Eselsohr processes user provided input at several places. Environmental variables at
startup, serialized data for authorization and persistence, as well as user input for article
URIs and titles. Only the latter two are passed to an interpreter, an HTML renderer,
but this falls into the category of XSS, which we will discuss later.

Assuming that the project would, for example, utilize a SQL database for persistence,
two mitigating factors come into play: The type-driven approach to application design
would make a string concatenation of a SQL query and user input a compile time error.
(see 3.1.1 Types as Capabilities) In addition, because collections are stored in
separate files, an attacker could only attack their own collection as they do not know
access tokens for others.

4.3.2 Broken Authentication
Common web applications base their authorization decisions on the identity or the group
association of the user. During a login sequence, the user is authenticated and a proof for

1https://owasp.org/Top10/, Accessed: 2021-10-11
2https://owasp.org/www-project-web-security-testing-guide/v42/, Accessed: 2021-

08-27
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this, usually in the form of a randomly generated token, is used by the client for the rest
of the session’s lifetime. As this token gives full control over the session of the user, it is
important to protect it during its use and to invalidate it as soon as it is not required
anymore.

The login process also requires additional protection. The most common way of authenti-
cation is providing a username and a password. Attackers have access to millions of valid
credentials, collected results of hundreds of data leaks, which they can use to try logging
in on any web page—this attack is also known as Credential Stuffing [57].

Capability-based security does not depend on authentication for authorization decisions,
and our prototype does indeed not implement authentication, so it would be easy to
say that this category also does not apply. There is no login page, so we do not have to
protect it. No user provided password or suchlike are processed, thus, there is no risk
of credential stuffing, and no further measures, like checking for weak passwords, are
necessary. Instead, only high entropy, server-side generated secrets are in use, so brute
force protection is not required.

We still rely on tokens that are passed between server and client for authorization. They
are either transmitted in the URL or inside the HTTP body. For a comparison how
well they are protected, see 4.4 Protection Level of Web-keys. The main
difference between web-keys and session IDs is that the latter grant complete authority,
while web-keys are usually limited in their scope. This reduces the possible impact of
leaking web-keys, depending on the situation. As Eselsohr does not use JavaScript, it
cannot send tokens with the HTTP Authorization request header, which would be suitable
to transmit secret data. In a hybrid model, entry points would use web-keys, as they can
be used across sites for sharing and can be stored in password or bookmark managers,
while in-app navigation would switch to the authorization header.

4.3.3 Sensitive Data Exposure

Instead of trying to attack applications directly, attackers also circumvent security mea-
sures by stealing secrets, by performing man-in-the-middle attacks, or getting clear text
data directly on the server. Oftentimes sensitive data are encrypted, but this added
complexity has its costs: key management is not trivial and choosing weak algorithms or
protocols could lead to a false sense of security. Keeping stored data to a minimum is
preferable.

Sending secret data in URLs already mandates that some form of transport encryption
has to be used. Some URI schemes enforce this, see 6.1 New URI Schemes. Eselsohr
can either be deployed behind a reverse proxy, which should handle the encrypted HTTPS
communication, or provides an encrypted web server itself. When providing HTTPS
directly it uses the recommended intermediate TLS configuration by Mozilla [58] as
seen in Table 4.1, which does not list any currently known weak cryptographic ciphers,
algorithms, or protocols.
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TLS Features Eselsohr
Protocols TLS 1.2, TLS 1.3
HTTPS Strict Transport Security max-age=31536000
TLS curves X25519, P-256, P-384
Ciphers TLS13_AES128GCM_SHA256

TLS13_AES256GCM_SHA384
TLS13_CHACHA20POLY1305_SHA256
ECDHE_ECDSA_AES128GCM_SHA256
ECDHE_RSA_AES128GCM_SHA256
ECDHE_ECDSA_AES256GCM_SHA384
ECDHE_RSA_AES256GCM_SHA384
ECDHE_ECDSA_CHACHA20POLY1305_SHA256
ECDHE_RSA_CHACHA20POLY1305_SHA256
DHE_RSA_AES128GCM_SHA256
DHE_RSA_AES256GCM_SHA384

Table 4.1: Eselsohr TLS configuration

One primary design goal of Eselsohr was ease of deployment. Therefore, any cryptographic
key management was avoided, except for the certificate and key for the TLS connection.
This means that persisted data are neither encrypted nor authenticated. The data stored
by the prototype—titles of websites—were not determined to be sensitive so no additional
protection was implemented. The recommended mode of operation is to self-host Eselsohr;
malicious administrators are not part of the threat model. Protecting against those would
require the implementation of End-to-End Encryption (E2EE) which would increase the
complexity of the application significantly.

4.3.4 Broken Access Control
Access control in a web application can be split into two categories: Function level and
object level access control. The former allows group x to use endpoint a, while group y
does not have this permission, but both can call endpoint b. The latter makes sure that
user Alice is allowed to modify objects that were created by her, while objects by Bob
are protected from her control.

Function level access control is often implemented by some kind of web framework. Routes
have annotations which level or groups of accounts are allowed to access them. For each
request the identity of the user is determined—for example, by looking up the session
with the provided session ID—and their group association is matched with the allowed
groups for that route. If they pass this authorization check, the request is valid and gets
performed.
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Object level access control on the other hand is implemented by the developers for
each application on an individual basis. It is dependent on the specific data structures,
increasing the change of making errors. If no proper object ownership is implemented,
users can access and modify all data that are available to their group level, a common
mistake [59], as long as they know the object identifiers, which could be as simple as
increasing integers.

Object capabilities naturally provide access control on the object level. Access is not
determined by identity but by possession of capabilities. Users can only access and modify
data, which they created themselves, or where capabilities were explicitly shared to allow
access. The prototype provides functionality to create shareable access tokens for single
entities or for whole collections, while allowing to set permissions on a fine-grained level.

Figure 4.1: Menu for sharing access tokens for article lists in Eselsohr

Figure 4.1 shows how access to the articles list can be shared in Eselsohr. Tokens have an
optional name for easier identification for users, can expire, and be revoked at any time.
It is also possible to create tokens with restricted permissions, making them suitable to
be shared with the public or a limited group of people, depending on the use case. An
example for this can be seen in 5.3.4 Embeddability. This is also a demonstration
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of the deep linking functionality of web-keys as was described in 2.5.1, and how different
web applications can cooperate safely with each other.

Type-driven application design provides static guarantees that permission checks are
performed for each request. (see 3.1.1 Types as Capabilities) No web controller
logic was implemented that allows accessing entities by their ID, thus, access through
access tokens is enforced.

4.3.5 Cross-Site Scripting
According to the OWASP, cross-site scripting attacks are found in two thirds of all web
applications [3]. User provided input gets interpreted as JavaScript code, which gets
executed in the browsers of other users. There are three different types of cross-site
scripting attacks: Reflected, Stored, and DOM XSS. The solution to this problem is to
correctly encode user input for the target environment. In this case, escaping characters
in a way, such that they get not interpreted as HTML but as plain data.

Eselsohr is not susceptible to XSS attacks:

• It is safe against reflected cross-site scripting. Eselsohr only accepts serialized access
tokens in an URL. This is checked by explicit type conversions at the boundaries
of the application.

• It is safe against stored cross-site scripting. Similar to the enforced authorization
checks, static types provide guarantees that user input has to be converted explicitly
to an Html type, where correct output encoding is applied during the conversion
whenever a web page is requested.

• It is safe against DOM cross-site scripting. Eselsohr does not use JavaScript and
attacker-controllable data are not dynamically included.

In addition, a strict Content Security Policy [60] (CSP) is used as defense-in-depth
mitigation. This policy tells browsers to not allow any JavaScript code to be run on the
site.

4.3.6 Insecure Deserialization
Deserialization vulnerabilities are often hard to exploit, as they need to be tweaked for
the specific target. But the possible impact can be a remote code execution, so these
attacks should not be neglected. This class of attack can be split up into two groups:
using available classes during the deserialization to perform malicious side-effects, or
changing data to gain, for example, administrator privileges.

The prototype utilizes serialization for two use-cases: Access tokens in URLs and for
persistence.

47



4. Security Analysis of Eselsohr

Access tokens are serialized Haskell records containing the ID of the resource and ID of
the referenced capability.

Listing 4.1: Snippet of Haskell code that is used for serializing access tokens

1 data Reference = Reference
2 { resourceId :: !(Id Resource)
3 , capabilityId :: !(Id Capability)
4 }
5 deriving stock (Generic, Show, Eq)
6 deriving anyclass Serialise
7
8 newtype Accesstoken =
9 Accesstoken {unAccesstoken :: LByteString}

10 deriving (Eq) via LByteString
11
12 instance ToHttpApiData Accesstoken where
13 toUrlPiece =
14 decodeUtf8 . encodeBase32Unpadded' . unAccesstoken
15
16 instance FromHttpApiData Accesstoken where
17 parseUrlPiece =
18 either
19 (const $ Left "invalid UrlToken")
20 (Right . Accesstoken)
21 . decodeBase32
22 . encodeUtf8
23
24 mkAccesstoken :: Reference -> Accesstoken
25 mkAccesstoken = Accesstoken . Ser.serialise
26
27 toReference :: Accesstoken -> Reference
28 toReference = Ser.deserialise . unAccesstoken

Listing 4.1 shows the definition of a Haskell record. When used as part of an URL, it
gets serialized into a binary string and Base32-encoded. This process is done in reverse
when accepting access tokens in requests.

The code shown here is safe against both types of deserialization attacks. As the serializa-
tion code is pure, it cannot perform any side-effects. This is enforced by the type system,
which makes deserialization safe [50]. The data structure also only contains identifiers,
which are then used to lookup the referenced data; so there are no properties that can be
manipulated directly.

For persistence, Eselsohr is serializing its data structures so that they can be stored in
files. Listing 4.2 shows some relevant Haskell code for this process.
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Listing 4.2: Snippet of Haskell code that is used for persisting serialized data

1 encodeFile :: (Serialise a, WithFile env m)
2 => FilePath -> a -> m ()
3 encodeFile fp =
4 writeBinaryFileDurableAtomic fp . toStrict . Ser.serialise
5
6 decodeFile :: (Serialise a, WithFile env m)
7 => FilePath -> m a
8 decodeFile fp =
9 Ser.deserialise . fromStrict <$> liftIO (readFileBS fp)

This snippet is also safe against remote code executions, or other side-effect inducing
attacks. But it works directly with the data types, which can be manipulated. To reduce
complexity and simplify the deployment, Eselsohr does not use cryptographic signatures
to authenticate the validity of persisted data. Administrators are advised to keep good
server hygiene by using full-disk encryption for data at rest, and to use the provided
systemd unit file or Dockerfile to provide sufficient process and file system isolation.

The serialization library in use also states that it is safe to use with untrusted user input,
as it is not susceptible to asymmetric resource consumption attacks3.

4.3.7 Using Components with Known Vulnerabilities
Outdated third-party components are a common attack vector, not only for web appli-
cations. Counter measures include keeping dependencies to a minimum, having regular
update cycles, or sandboxing components. But modern software projects include thou-
sands of dependencies and sub-dependencies, thus, making it hard to keep track of them
all.

Capability-based security projects approach this problem from another direction. Every
single package is potentially dangerous, as they run with the same privileges as the
program that calls it. Removing these default rights and letting components start with
an absolute minimum changes the risk landscape [61].

At first it looks like Haskell’s separation of pure and impure code could help us here.
Calling code from third-party dependencies that do not run in IO cannot have any
side-effects, and are therefore safe to call. But once side-effects are allowed, they cannot
be limited. There is no way to declare that file system access is forbidden but calling
a specific HTTP endpoint is allowed. Also, Eselsohr’s mechanism to restrict possible
side-effects (see 3.1.2 Types for Explicit Side-effects) cannot be applied to
external dependencies. In addition, unsafePerformIO can be used to call functions

3https://github.com/well-typed/cborg/blob/9be3fd5437f9d2ec1df784d5d939efb9a85fd1fb/
README.md, Accessed: 2021-08-29
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with side-effects in a pure context. There is a subset of Haskell, called Safe Haskell [62],
that closes these loopholes in the type system, but it is not widely implemented and not
in use in Eselsohr.

This is one example where capability-based security would help reducing the danger of a
vulnerability class, but its effectiveness is highly dependent on the runtime it is being
executed on.

4.3.8 Summary
Table 4.2 shows a summary of our analysis results. We demonstrated that using capability-
based techniques mitigates and sometimes even prevent certain vulnerability classes. A
comparison was added to the table where we show the protection effects of a pure
OCAP system. Capabilities would be protected by a trusted environment, like the
operating system or the language runtime, so “Broken Authentication” and “Sensitive
Data Exposure” would be no problem anymore. In an OCAP system, the security of
the XML parser would depend on the amount of authority passed to the parser, so we
scored this class as “mitigated”. Certain design choices exist for OCAP systems to prevent
issues with deserialization [63]. As mentioned in the corresponding subsection, third-party
dependencies in pure OCAP programming languages would start with no authority, so
outdated or vulnerable code would cause even less harm.

Vulnerability class Protection level

Eselsohr

Pure OCAP system

A1:2017-Injection �� ��
A2:2017-Broken Authentication �� �
A3:2017-Sensitive Data Exposure �� �
A4:2017-XML External Entities (XXE) - ��
A5:2017-Broken Access Control � �
A6:2017-Security Misconfiguration � �
A7:2017-Cross-Site Scripting (XSS) � �
A8:2017-Insecure Deserialization �� �
A9:2017-Using Components with Known Vulnerabilities �� �
A10:2017-Insufficient Logging & Monitoring � �

�=prevention ��=mitigation; �=no effect; -=not analyzed;

Table 4.2: Summary of security analysis results

4.4 Protection Level of Web-keys
Unlike object capabilities in a capability-safe programming language, web-keys are not
unforgeable. They are also not protected by a runtime system. URL with access tokens
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are plain strings transmitted over the internet. Anyone who manages to get a hold of a
web-key can use it, regardless of whether the token was given intentionally to that person
or not. Thus, preventing the leakage of the web-key is of utmost importance.

There are several places where HTTP server and clients can exchange data:

• HTTP header

• HTTP body

• Cookies

• URL

• HTML body

Without the use of JavaScript, a browser can transfer data to the server by:

• fetching a resource over HTTP GET (data can be in the path or in a query string);

• submitting an HTML form over HTTP POST;

• sending a cookie.

JavaScript gives us several more options:

• attaching HTTP header;

• sending data in the HTTP body (commonly used with JSON or XML data types);

• extract data from the URL fragment.

Eselsohr transfers web-keys as query strings inside URLs. As described in 2.5 Wa-
terken: Web-Key, this has several drawbacks, as browsers do not have a concept
of URLs with sensitive data in them. They are stored in server logs and browser caches,
can be seen in the browser history, are send by default in the HTTP referer header,
and can be shoulder surfed.

Table 4.3 shows a comparison of how well protected a web-key is with different transfer
methods. The URL path and query string are the most exposed places, while HTTP
headers and cookies are the least exposed. But browsers do not support a way that would
allow attaching a web-key to a link, where the browser would know that the web-key has
to be send as HTTP header or as a cookie. With cookies, explicit control over authority
would also be lost.
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Transfer method Extraction method

Visible in location bar

Accessible by JavaScript

Send by default in referer header

Stored by default in server logs

Stored by default in browser cache

HTTP header - �� - � �
HTTP body - � - � �
Cookie - �� - � �
URL path � � � � �
URL query string � � � � �
URL fragment � � � - �

�=completely exposed; ��=partly exposed; �=not exposed; -=not applicable

Table 4.3: Comparison of how different data transfer methods expose web-keys

URL fragments have the benefit of not being send in the referrer header, but require the
use of JavaScript. As the behavior of the referrer header can be configured by the HTTP
Referrer Policy, the exposure of using the URL path or query string is reduced. The
HTML 5 History API can be used via JavaScript to rewrite the content in the location
bar, thus, reducing the exposure of the web-key there.

Ideally, browsers would support an URI scheme which addresses the above drawbacks
and treat the web-key as secret data. (see 6.1 New URI Schemes)
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CHAPTER 5
Model Evaluation

In this chapter, we are going to compare the prototype, built with object capability
techniques, against other web applications built on identity-based access-control lists. We
are first describing our methodology, present the other contestants, and then show the
results of the evaluation.

5.1 Methodology

First, we needed some way to reliably measure indicators that could be used for the
upcoming evaluation. Lines of Code (LOC) are a questionable metric [64], not only
because they have no real meaning, but also because results vary strongly when different
programming languages or paradigms are compared. The chosen example projects are not
prominent enough to have assigned Common Vulnerabilities and Exposures (CVE) so we
cannot compare against known security issues that existed in these projects. Therefore,
we will compare conceptual differences between ACL-based and OCAP-based applications
and use Eselsohr and two other apps for examples.

5.2 Contestants

This section describes two alternatives to Eselsohr, both built on identity-based security
paradigms. All these services can be used as a bookmarking server, and serve similar
purposes. They are all available under a open-source license and their source code is
publicly hosted. This makes it possible to conduct a white-box security analysis.
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5.2.1 Wallabag
Wallabag1 was started in 2013 and is written in PHP2. It is built on the Symfony web
framework3. The Wallabag team offers applications for the web and mobile apps for
Android and iOS as well as browser extensions. Wallabag can extract the content of
web pages and display it in a more friendly to read format. Several import and export
functions are available that help migrating to or from the service. There is also support
for RSS feeds, so others can follow the list of stored articles.

5.2.2 Espial
Espial4 was started in 2019 and is written in Haskell and PureScript5. The backend
is built on the Yesod web framework6, while the frontend is written in PureScript7, a
Haskell-like language that transpiles to JavaScript and which is used to build Single
Page Applications (SPA). Espial users can add, in addition to web pages, also notes with
support for Markdown. Articles can not only be added by browsing to the web application
and using the corresponding form, but also by using a bookmarklet, a JavaScript snippet,
that can be bookmarked. It opens a new browser window with the add form, which has
the current page’s title and URL already filled in.

5.3 Evaluation Results
For the evaluation, four main aspects were compared. First, we will look at user man-
agement, a crucial aspect in identity-based applications. We will then compare how the
features of the web applications can be used by analyzing how a privileged endpoint for
a single action performs authorization and which other security protections are in place.
We will continue by evaluating how resources, which can be accessed by the user, can be
shared with others. Finally, we will compare the embeddability of the applications and if
parts of them can be integrated within other web applications.

5.3.1 User Management
All identity-based web applications require some kind of user or account model, which is
then used for authentication and authorization. Additionally, secure password hashing
algorithms, brute force protections, and session management are also needed. This common
functionalities are often provided by the web framework in use. Both ACL apps have
built their user models on top of code provided by their chosen frameworks.

1https://www.wallabag.it/en, Accessed: 2021-09-10
2Latest commit: 6142adc4dcfef2dda4fe1c244ad8873e5eae71c9
3https://symfony.com, Accessed: 2021-09-10
4https://github.com/jonschoning/espial, Accessed: 2021-09-10
5Latest commit: ef298cfdd0f00c9ebdb0ed56d73b55912a3f03cf
6https://www.yesodweb.com, Accessed: 2021-09-10
7https://www.purescript.org, Accessed: 2021-09-11
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The OWASP associates several risks with user management including:

• storing passwords in plain text, in encrypted form, or with a cryptography weak
hashing algorithm;

• allowing weak or well-known passwords;

• implementing vulnerable password reset;

• missing brute force protections for the login;

• missing multi-factor authentication.

Because implementing secure user management is a non-trivial task, there is a trend in
the industry to externalize it to third-party providers and using Single Sign-On (SSO)
solutions like SAML or OpenID Connect for authentication and authorization [65]. Of
course, this also increases the risks associated with centralization. If the same account,
hosted by an identity provider, is used for a multitude of different services and access to
it is temporarily or permanently removed, then these applications can no longer be used
or the user has to start over with a new account.

During the analysis of the source code of Wallabag, a security configuration could be
found that is not seen as best practice anymore8. The project currently uses SHA-512
as password hashing algorithm. This is not ideal as SHA-512 is a comparatively fast
operation, a property, which is not desirable for password hashes, as this allows for faster
brute forcing attacks. Modern password hash algorithms, like Argon2, provide several
mitigations against such attacks and should be used [66]. Espial is using the bcrypt
algorithm for password hashes9, which is suited for this task.

With object capabilities, the concept of identity is optional. OCAP-based applications,
like Eselsohr, do not require to implement user management and can, therefore, avoid
the complexity and potential security issues associated with it.

5.3.2 Adding a Bookmark
We will now look at how typical ACL-based web applications perform simple data
manipulation. In this case, adding a new bookmark is part of a category of operations
commonly known as “Create, Read, Update, Delete” (CRUD).

1. The web application accepts a new request from the user.
8https://github.com/wallabag/wallabag/blob/6142adc4dcfef2dda4fe1c244ad8873e5eae71c9/

app/config/security.yml#L3, Accessed: 2021-09-18
9https://github.com/jonschoning/espial/blob/c3a126b9eadb3c3778ab93ed4c4d0e805f669d3c/

src/Model.hs#L35, Accessed: 2021-09-20

55

https://github.com/wallabag/wallabag/blob/6142adc4dcfef2dda4fe1c244ad8873e5eae71c9/app/config/security.yml#L3
https://github.com/wallabag/wallabag/blob/6142adc4dcfef2dda4fe1c244ad8873e5eae71c9/app/config/security.yml#L3
https://github.com/jonschoning/espial/blob/c3a126b9eadb3c3778ab93ed4c4d0e805f669d3c/src/Model.hs#L35
https://github.com/jonschoning/espial/blob/c3a126b9eadb3c3778ab93ed4c4d0e805f669d3c/src/Model.hs#L35


5. Model Evaluation

2. A routing mechanism maps the URL path from the request to a controller, which
handles requests for that particular path.

• Some frameworks allow to declaratively restrict paths to only certain groups
of users.

• Alternatively, ad-hoc restrictions can be applied in the controller itself.

3. Inside the controller, data from the URL and HTTP body are optionally extracted
if needed.

4. Some kind of authorization check is called to verify, if the calling user is allowed to
perform the action.

5. Data are validated when handling user input, where it has to meet some criteria
for further processing.

6. The controller calls a service performing the business logic, or performs the logic
itself; this typically involves a database.

7. Based on the return values of the service, a response is send back to the user.

Checking if a subject is allowed to call a particular function or endpoint is called function-
level authorization. Verifying that a subject is allowed to access a specific object is called
object-level authorization. Validation of both of them for every single access is also called
the Principle of Complete Mediation[67].

Listing 5.1 shows how adding a new bookmark is handled in Espial10. The function
_handleFormSuccess handles the main part of the controller’s logic. It receives HTML
form data from the user and starts by requiring that the current user has to have a
valid authenticated session by calling requireAuthPair. This authorization function
is provided by the used web framework. In this part of the application, object-level
authorization is not used, as every user is implicitly allowed to add new bookmarks.
The rest of the function then performs data validation, stores the new bookmark in the
database, and archives the content of the bookmark.

Listing 5.1: Espial: Controller for adding bookmarks

1 postAddR :: Handler ()
2 postAddR = do
3 bookmarkForm <- requireCheckJsonBody
4 _handleFormSuccess bookmarkForm >>= \case
5 (Created, bid) -> sendStatusJSON created201 bid

10https://github.com/jonschoning/espial/blob/c3a126b9eadb3c3778ab93ed4c4d0e805f669d3c/
src/Handler/Add.hs#L59, Accessed: 2021-09-20
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6 (Updated, _) -> sendResponseStatus noContent204 ()
7
8 _handleFormSuccess :: BookmarkForm -> Handler (UpsertResult,

Key Bookmark)�→
9 _handleFormSuccess bookmarkForm = do

10 (userId, user) <- requireAuthPair
11 bm <- liftIO $ _toBookmark userId bookmarkForm
12 (res, kbid) <- runDB (upsertBookmark userId mkbid bm tags)
13 whenM (shouldArchiveBookmark user kbid) $
14 void $ async (archiveBookmarkUrl kbid (unpack

(bookmarkHref bm)))�→
15 pure (res, kbid)
16 where
17 mkbid = BookmarkKey <$> _bid bookmarkForm
18 tags = maybe [] (nub . words . T.replace "," " ") (_tags

bookmarkForm)�→

The main problem with this kind of controller logic is that the authorization logic is
optional. There is no enforcement of access restriction to that endpoint or on objects
themselves. In this case, the function requireAuthPair is also used for getting data
about the currently logged-in user, so it is unlikely that this function gets forgotten, but
there are other controllers where that could be the case. Also, if Espial chooses to add a
less privileged user group, which does not have permission to create new bookmarks, new
authorization checks would have to be added, without any guidance by the compiler or
framework.

As seen in 3.1.1 Types as Capabilities and 3.2 URLs as Capabilities,
an OCAP-style web application, like Eselsohr, solves these problems on an architectural
level. Access checks are statically enforced by embedding the result of authorization
checks in type-level access tokens. Service code can then require such tokens, guaranteeing
that authorization was successful. By using web-keys, it is not possible to designate a
resource without the associated permission set, so we always fulfill the complete mediation
principle.

5.3.3 Sharing Functionality

When using a web application, users have certain expectations compared to traditional
desktop applications, like the ability to share links to web pages or to bookmark them[40].
ACL-based applications usually only have the choice between public pages that can be
accessed by anyone, and private pages which require users to be logged-in when they
open the link, as designation and authority are split.

This is the case in Espial. The bookmarks of users are public by default and are available
at https://example.org/u:username/. They also have the choice to declare a
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bookmark private, which hides it from that user’s public page and requires an authenticated
session. There is no functionality to share pages with a limited set of other people.

In Wallabag bookmarks are private by default, but they can be put into a public, read-only
mode. In addition, unread, archived, starred, or all articles can be shared over RSS feeds.
For this to work, Wallabag generates a 14 character long random token as part of the
feed’s URL path, which acts as a capability, and can also be revoked by the user at any
time. It is not possible to generate multiple tokens, or put further restrictions on them.
The same token is also used for all available feeds, but it is still a very basic capability
system, embedded in an otherwise ACL-based application.

Web applications built on object capabilities, and web-keys specifically, take this con-
cept further and allow everything to be shared with links if desired. As mentioned
in 4.3.2 Broken Authentication, a hybrid model could be deployed, where only
the endpoints that should be shareable are available with web-keys. The rest relies on
HTTP header authorization, as long as no other secure option for safe URLs in web
browsers exists. (see 6.1 New URI Schemes) Eselsohr also allows to apply more
restrictions on web-keys, such as a limited validity period and restricted permission sets.

5.3.4 Embeddability
The inability to embed ACL-based products is also a weak point of them. HTML provides
the functionality to embed other web pages with the iframe element, but its usefulness
is often reduced for fear of security vulnerabilities. These frames are the main attack
vector for clickjacking attacks and the main prevention method is by disabling the option
to embed a web site completely, or at least for cross-origin requests. This works, again,
because an attacker can link to a well-known endpoint from a popular web site on their
attack page and trick other people to reveal sensitive information or perform authorized
actions, because the ambient authority granted by their browsers cannot differentiate
between well-meant or malicious intent. This hinders the ability to built collaborative
web applications.

Object capabilities allow for secure embedded pages and collaboration. Clickjacking, a
confused deputy attack, is no risk for OCAP-based web applications as an attacker would
need to know the web-key for the page they want to link. At this point they would already
have access and have no need for social engineering techniques. Such applications can
safely omit the HTTP headers that disallow framing the web site and allow other web
applications to embed them as they like.

Figure 5.1 shows the Eselsohr page to create a new article, embedded as a custom widget
in the instant messenger Element11. This messenger allows embedding arbitrary web
pages as iframes by providing a link to them. Usually, only pages that do not require
authorization can be used for this, as cookies cannot be used to show everyone in the
channel the same page. But web-keys do not have this limitation and, therefore, allow

11https://element.io, Accessed: 2021-09-05
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Figure 5.1: Eselsohr page with restricted permissions, embedded in an iframe inside an
instant messenger channel

for these scenarios. The provided web-key only has the permission to create new articles
for that specific resource and nothing else. If the link would leak, no other actions could
be performed with it.

5.3.5 Summary

Table 5.1 answers the question whether security vulnerabilities in authorization systems
can be prevented by design. By using types as authorization tokens, we get strong
guarantees that authorization checks are not forgotten and that services cannot be called
unauthorized. Web-keys, a combination of designating a resource and a corresponding
set of permissions, are not susceptible to confused deputy attacks and are, therefore,
resistant against vulnerabilities like cross-site request forgery or clickjacking. Using the
type system for explicit side-effects improves the reasoning about the code base, as one
has a better understanding of which functions are safe to call and which are potentially
dangerous. In addition, by disallowing arbitrary side-effects everywhere, certain areas of
the program, like those that handle untrusted user input with deserialization, become
secure.
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OCAP Technique Prevented Vulnerability
Types as capabilities Forgotten authorization checks
Combining designation with authority Confused Deputy
Explicit side-effect handling Too much ambient authority

Table 5.1: A list of object capability techniques and what vulnerability they prevent

Table 5.2 answers the question whether OCAP-based applications are at least as secure as
ACL-based ones. The chosen properties are the overlying concepts of the techniques that
were listed in Table 5.1. In ACL-based systems, subjects cannot choose which authority
they want to use when accessing a resource. Authority is implicitly available in the
environment and is granted based on the identity of the caller. In the context of code,
this means that every function can potentially perform any action, as all code has equal
authority. By requiring access tokens within the code, and, thus, making authority explicit,
the authorization flow in the program becomes equivalent with the creation and passing
of access tokens as arguments. Functions have to explicitly request authority before it
can be used.

As subjects in ACL systems do not have explicit control over authority, they cannot
declare a purpose when accessing a resource. Therefore, a subject cannot securely perform
actions on behalf of others, as all actions will use the authority of the subject. Object
capabilities, on the other hand, combine designation with authority, thus, allowing for the
use case stated above. Collaboration is secure, as the subject is able to use each capability
for its intended purpose. To uphold the principle of least authority, we want to grant
subjects the minimum required amount of authority they need to perform their tasks.
This can be done in an ACL-based system by creating small identities with minimum
rights, but it is hardly practical.

Imagine an administrator with access to several subsystems: the administrator would now
have to create several user accounts and groups for themselves, so that they can minimize
the authority per user, while always having to check that they do not perform an action
with the wrong user. In addition, someone with no administrative privileges might not
even be capable of creating new lower privileged accounts. This is not a problem in an
object capability system. The fact that someone is an administrator does not prevent
them from using capabilities with less privileges for their actions. Also, administrators
can share single, high-privileged capabilities with trusted users, without having to put
them into a high-privileged, more general admin group.
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Property ACL OCAP
No Ambient Authority ✗ ✓

No Designation without Authority ✗ ✓

Principle of Least Authority ∼ ✓

Table 5.2: Comparison of security properties of ACL and OCAP
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CHAPTER 6
Related Work

Developments in improving authorization schemes and security models are not halting.
This chapter presents some noteworthy projects that are occurring in the space of
capability-based security.

6.1 New URI Schemes

There are several proposals to introduce new URI schemes which are aware that web-keys
are secret data.

The Bearer Capability URI Scheme (Bearcap): Bearcaps [68][69] combine URLs
with an access tokens. Listing 6.1 shows an example Bearcap URI. They contain two
query parameters: u containing the URL associated with the request and t containing
the access token. When a compliant browser resolves this URI, the token will be send as
HTTP Authorization header. Only the URL part will be displayed in the location bar
and in other UI elements which would display the URI. The token will also not be send
as part of the HTTP Referrer header. Other compliant applications like web servers or
proxies would not log the token part by default. This addresses the issues described in
Section 4.4.

Listing 6.1: Example Bearcap URI

bearcap:?u=https://eselsohr.local/articles/example-title&
t=QMANQJKQCLCDXJT5DITHDRPVMFQF4MN3MCKUBFZVIPHU52S7PX2CI2GU
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The Bearer URL Scheme: Bearer [70] URLs work, similar to Bearcaps, by combining
access token with URLs. Listing 6.2 shows an example Bearer URI. They resemble the
formerly supported syntax for HTTP Basic Authentication. In addition to the behavior
described for Bearcaps, Bearer compatible browsers can extract the token out of the URIs
while building the DOM, making the token inaccessible to JavaScript. Furthermore, the
DOM spec could be enhanced, such that passing Bearer URIs to, for example, the fetch
API is possible within JavaScript, but accessing the contained token is still forbidden.
UserOnly is an example for an attribute, similar to cookie attributes, that restricts the
use of the token, such that it is only send when triggered by an user gesture, therefore
further hardening against XSS attacks.

Listing 6.2: Example Bearer URI

bearer://QMANQJKQCLCDXJT5DITHDRPV3MCKUBFZVIPHU52S7PX2CI2GU;
UserOnly@https://eselsohr.local/articles/example-title

6.2 GNAP and ZCAP-LD
The Grant Negotiation and Authorization Protocol [71] (GNAP), formerly known as
OAuth 3.0, is an in-progress next generation protocol. It is based on the experience of
practical implementations of OAuth 2 but not compatible with previous OAuth standards.
GNAP supports features like:

• requesting multiple access tokens with one grant;

• continuing a grant to, for example, drop privileges when not requiring them anymore;

• a built-in concept for identities, avoiding the need for extensions like OpenID
Connect;

• the ability to differentiate between running instances of the same app;

• first-class support for interactions to declare what the authorization server should
respond with: a redirect, an app launch, a callback, or no interaction at all if an
established side-channel exists, such as carrier pigeons [72].

GNAP is a protocol that can work with the Authorization Capabilities for Linked
Data [73] (ZCAP-LD) data model. ZCAP-LD combines object capabilities and Linked
Data Proofs [74] to allow delegating authority in a distributed network by chaining to-
gether capability documents. Each document can be further restricted by adding caveats
to them to restrict their scope, their lifetime, or to revoke them later on.
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6.3 Macaroons
Macaroons build up on cookies, hence the name, but extend them with caveats that
attenuate or confine them, so they are more suitable for authority delegation purposes[75].

They use nested, chained MACs—HMACs, to be more precise—to append restrictions
to the cookies, like for what they can be used for, when usage is allowed, if additional
authentication proofs are required, such as third-party signatures, and more. Each ap-
pended caveat is an element of a list of predicates that all have to be valid, when they
are evaluated for each particular request.

6.4 Modern OCAP Developments
The OCAP community continues the steadily improvement of this security model and
works on new projects and collaborates with committees to standardize these techniques.
Some of these newer developments are listed here.

6.4.1 Endo

Endo is a sandboxed and OCAP-safe subset of JavaScript developed by Agoric [76]. It
offers protection against malicious third-party dependencies by explicitly passing powerful
capabilities, like the ability to interact with the network. Reviewable policies allow to
reduce the amount of authority to a minimum.

As part of the overall project, a new ECMAScript standard called ShadowRealm is
currently proposed that would eliminate the risks of cross-site scripting attacks [77]. This
is done by running user-provided input in an environment void of capabilities. The attack
surface is reduced without access to the network, the file system, or the console.

Agoric also works on implementing a JavaScript version of a capability transport protocol
as part of their platform SDK1.

6.4.2 The Spritely Project

Spritely uses object capabilities to build a platform for federated social networks [78]. It
allows secure distributed computing and is implemented in Racket, a LISP-like program-
ming language. The project was heavily inspired by the works of Miller et. al. and closely
works with Agoric to be compatible with their new CapTP implementation. The project’s
components each handle a specific area of application development, like storage and file
distribution, identity management, serialization, and debugging, while implementing state
of the art OCAP techniques.

1https://github.com/Agoric/agoric-sdk/blob/5521c6475242d8835acf71dda4311e5a55b4c23e/
packages/captp/README.md, Accessed: 2021-08-31
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The CapTP implementation in Spritely, the foundational layer for Spritely, supports
different transport layer protocols and can be used, for example, over the Tor network to
allow for peer-to-peer applications [79].

6.4.3 Cap’n Proto
Cap’n Proto [80] is a serialization format and RPC framework, suitable for the secure
exchange of data. It utilizes capability-based security and can be seen as capability
transfer protocol.

The design of Cap’n Proto was based on the experiences the maintainer made when
developing another serialization protocol called Protocol Buffers (ProtoBuf). Unlike in
ProtoBuf, the encoding of Cap’n Proto messages is suitable as a data interchange format
as well as an in-memory representation, so no separate encoding and decoding step is
required. The encoding is also platform independent and was optimized for modern CPUs.
Promise pipelining is supported as well and future integration of the Noise Protocol
Framework is planned [81], a cryptographic framework already used by other projects
like the WireGuard VPN [82].

Originally created for sandstorm.io [83], it is now developed by a team at Cloudflare,
primarily in use in their serverless computing platform [84].

6.4.4 Extending the Prototype
The current system has still potential for improvements, as it is missing several features
found in advanced web applications, such as providing an API for external clients,
integration with external services, or applying encryption for confidentiality and integrity
purposes.

The backend part of Eselsohr could be extended to provide access to external clients
via an API. When using the API over HTTP, Hypermedia as the Engine of Application
State [85] (HATEOAS) could then be used to communicate available capabilities to clients.
These external clients could also use more advanced techniques to securely exchange
authorization tokens, like Cap’n Proto. This protocol could also be used for inter-process
communication, in case the prototype migrates to a multi-process or decentralized
architecture. Alternatively, a custom implementation of Bearcaps or Bearer URIs could
be used, when direct support by browsers is not required. This was, for example, already
implemented in the federated social network Mastodon [86].

Support for ATOM [87] as a syndication format and protocol could be used to further
demonstrate, how authorized URLs in form of web-keys can integrate with existing
software without them having to implement custom authorization code.

The prototype omitted the implementation of authentication on purpose to avoid the
possible confusion that authorization is tied to authentication. But this does not mean
that authentication, or a concept of identity, is useless. A future version of the prototype
could add support for users and authentication to implement functionality like “Audit
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log: User x created token y”, while still handling authorization with access tokens. This
could also be used to distribute capabilities between users in the system, without having
them to rely on secure side-channels to exchange tokens with each other.
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CHAPTER 7
Conclusion

This thesis proposes an alternative authorization model for web applications. Object
capabilities combine references to objects with the associated set of permissions. We
showed what security vulnerabilities arise when designation and authority are split apart
in the context of web applications and how this problem is inherent to applications
built on access-control lists. In the addressed scenarios, we could then demonstrate that
programming in an object capability style helps eliminating certain security vulnerability
classes on an architectural level, and provided some techniques and patterns based on
this style, like web-keys.
A functional prototype was implemented to demonstrate that these techniques can be
used in practice. The security analysis and model evaluation showed that OCAP-based
applications have no significant drawbacks compared to ACL-based applications, while
providing improvements in areas like shareability and embeddability. This was done by
conducting a security evaluation, with a focus on the most common vulnerabilities found
in web applications, and by comparing the prototype with other existing applications.
We also looked at how modern browsers can securely exchange data between server and
client, and which extensions are needed to better integrate and protect capabilities in
web applications. The biggest problem remains to be the transfer of capabilities over
URLs. Hyperlinks are the number one method to navigate between web applications,
but web browsers currently assume that URLs only contain non-sensitive information,
making it hard to embed secrets like capabilities. In addition, a capability in an URL is
a plain string with no further protection, so anyone could come up with a possibly valid
capability, although it was not passed to them explicitly.
The prototype was developed in a programming language, which was not explicitly
designed for this style of programming. It is capable of running on common operating
systems without the need for specialized application frameworks. As these existing systems
are not following OCAP principles and assume ambient authority, adapters and wrappers
are required to integrate them into an object capability application.
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7. Conclusion

Finally, an overview over current OCAP related projects was given and how the prototype
could be further improved in the future.

7.1 Future Work
For future research, it should be evaluated how existing features in web browsers could
be used to circumvent the current limitations in regard to transferring capabilities. This
thesis focused on web-keys, capabilities in URLs, to navigate between web pages because
they work without JavaScript and can be used across different web applications. With
JavaScript more methods of transfer would be available, such as adding HTTP headers,
non-HTML HTTP bodies, or WebSockets. These channels could then be used to securely
transfer capabilities within the same web application.

It would also be of interest, how different application architectures effect the effectiveness
of object capability security. The implemented prototype utilized static type checking
and a monolithic architecture, allowing it to apply techniques that are not available in
a dynamically typed language or in a microservice architecture. These design decisions
would then require a different set of OCAP-based techniques.
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Appendix

Eselsohr will be published under the European Union Public License1 (EUPL) at the
following public repository: https://github.com/mkoppmann/eselsohr.

The hash of the latest Git commit at the time of submitting this thesis is:
92ffe2005d8acf097e42ec482369e514b471e78a.

1https://joinup.ec.europa.eu/collection/eupl/eupl-guidelines-faq-infographics,
Accessed: 2021-09-20
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